SII	MON FRASER UNIV	ERSITY				
DEPARTMENT OF MATHEMATICS AND STATISTICS						
Final Exam						
MATH 232						
August 6, 1998, 8:30 – 11:30 p.m.						
Name:						
J	family name	given name				
Number: _						

INSTRUCTIONS

- 1. This exam has 14 questions on 19 pages. Please check to make sure your exam is complete.
- 2. No calculators may be used.
- 3. Ask for clarification if you cannot understand the question or there appears to be an error.
- 4. Please write with a black or blue pen.
- 5. Use the reverse sides of the pages for rough work.
- 6. In each question indicate how you obtain your answer.

The more clearly you explain what you are doing the more part marks you will get.

Question	Score	Max
1		7
2		7
3		4
4		6
5		6
6		8
7		7
8		7
9		8
10		7
11		8
12		8
13		8
14		9
Total		100

[4] **1.** (a) Describe carefully the kinds of row operation which are permitted in bringing a matrix to reduced row-echelon form.

ANSWER BOX

[3] (b) Find a reduced row-echelon matrix row-equivalent to

[]	1	0	1	2
()	1	0	-1
	1	2	1	0
	2	4	2	0

2. Let

$$A = \begin{bmatrix} 0 & 0 & -3 & -4 & -5 \\ 1 & -1 & -2 & -3 & -4 \\ 0 & 0 & -1 & -2 & -3 \end{bmatrix}, \quad \boldsymbol{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix}, \text{ and } \boldsymbol{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}.$$

[4] (a) Express the general solution of the homogeneous system Ax = 0 as a linear combination of vectors in \mathbb{R}^5 .

[3] (b) Find a particular solution of the nonhomogeneous system Ax = b.

The solution should be in terms of b_1 , b_2 , b_3 , but contain no arbitrary constants.

[4] **3.** Let A denote the matrix

$$\begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & 2 \\ 1 & 2 & 3 \end{bmatrix}$$

Express A as a product of elementary matrices.

4. Let $A \in \mathbb{R}^{5\times 6}$ have columns a_1, \ldots, a_6 respectively. Let the reduced row-echelon form of A be

[2] (a) Write down a basis for the row space of A.

ANSWER BOX

[2] (b) Write down a basis for the column space of A.

ANSWER BOX

[2] (c) Write down a basis for the nullspace of A.

5. Let *l* be the line in \mathbb{R}^2 whose equation is y = 2x. Let $P : \mathbb{R}^2 \to \mathbb{R}^2$ be the function such that $P(\mathbf{a})$ is the projection of \mathbf{a} on *l*.

Let $R : \mathbb{R}^2 \to \mathbb{R}^2$ be the function such that $R(\boldsymbol{a})$ is the reflection of \boldsymbol{a} in l.

[3] (a) Show that P is a linear transformation and find the matrix which is its standard representation.

Write your answer in the box provided on the next page.

[3] (b) Express R as a linear combination of P and I the identity transformation on R².
Hence show that R is also a linear transformation.
Write your answer in the box provided on the next page.

ANSWER BOX

(a)

ANSWER BOX

(b)

[4] 6. (a) Let V be a vector space over ℝ and S be a subset of V.
State a criterion for S to be a subspace of V.

ANSWER BOX

[4] (b) Which of the following sets are subspaces of \mathbb{R}^3 ?

1. $S = \{[x, y, z] : x \ge 0\}$

2. $S = \{[x, y, z] : x + 3y = z\}$

3. $S = \{[x, y, z] : xy = 0\}$

Justify your answers briefly.

7. Let $V = \mathbb{R}^{2 \times 2}$ denote the vector space over \mathbb{R} whose vectors are the 2 × 2 matrices with entries from \mathbb{R} . Let

 $\boldsymbol{v}_1 = \left[egin{array}{cc} 1 & 1 \\ 0 & 0 \end{array}
ight], \ \boldsymbol{v}_2 = \left[egin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}
ight], \ \boldsymbol{v}_3 = \left[egin{array}{cc} 1 & 0 \\ 1 & 0 \end{array}
ight], \ \boldsymbol{v}_4 = \left[egin{array}{cc} 0 & 1 \\ 1 & 1 \end{array}
ight].$

[4] (a) Show that $\{v_1, v_2, v_3, v_4\}$ is linearly independent in V.

ANSWER BOX

[3] (b) Find the coordinate vector of the matrix $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ with respect to the ordered basis $\mathcal{B} = \langle \boldsymbol{v}_1, \boldsymbol{v}_2, \boldsymbol{v}_3, \boldsymbol{v}_4 \rangle$.

ANSWER BOX	

[4] 8. (a) Evaluate the determinant

ANSWER BOX

[3]

(b) Let A be an $n \times n$ matrix and A_{ij} denote the *i*, *j*-th minor of A.

9. Let A denote the matrix

[4] (a) Find the eigenvalues of A.

[4] (b) Discover whether A is diagonalizable over and \mathbb{R} explain your answer carefully.

[3] 10. (a) Find a basis for the orthogonal complement in \mathbb{R}^4 of the space $W = \mathbf{sp}([1, 2, -1, 1], [1, -1, 1, 1]).$

[4]

(b) Let $\boldsymbol{b} = [0, 3, 3, 3]$. Find the projection \boldsymbol{b}_W of \boldsymbol{b} on W.

11. Let W = sp([1, -1, -1, 1], [2, 2, 1, 1], [0, 1, 0, 1]).

[5] (a) Find an orthogonal basis for W.

ANSWER BOX

[3] (b) Find an orthonormal basis for W.

12. Let $\boldsymbol{b}, \boldsymbol{v}_1, \ldots, \boldsymbol{v}_k$ be nonzero vectors in \mathbb{R}^n such that

$$\boldsymbol{v}_i \cdot \boldsymbol{v}_j = 0$$
 $(1 \le i < j \le k).$

Let W denote $\operatorname{sp}(\boldsymbol{v}_1, \ldots, \boldsymbol{v}_k)$ and \boldsymbol{b}_W denote the projection of \boldsymbol{b} on W. Let A denote the $n \times k$ matrix $[\boldsymbol{v}_1 \ldots \boldsymbol{v}_k]$ whose columns are $\boldsymbol{v}_1, \ldots, \boldsymbol{v}_k$.

[4] (a) Prove that the set $\{v_1, \ldots, v_k\}$ is linearly independent.

[4] (b) **Prove that**

$$\boldsymbol{b}_W = A \left(A^T A \right)^{-1} A^T \boldsymbol{b} \,.$$

What has to be shown here is that the vector \boldsymbol{b}_W defined by this formula satisfies $\boldsymbol{b}_W \in W$ and $\boldsymbol{b} - \boldsymbol{b}_W \perp W$.

13. Let V denote the vector space over \mathbb{R} consisting of all polynomials in $\mathbb{R}[x]$ of degree at most 2. Let

 $\mathcal{B} = \langle x + 1, (x + 1)^2, 1 \rangle, \quad \mathcal{B}' = \langle 2x - 1, 2x + 1, x^2 + x \rangle.$

Let $F: V \to V$ be the unique linear transformation such that F(1) = 1 + x, $F(x) = x + x^2$, $F(x^2) = 1 + x^2$.

[4] (a) Find a matrix $C \in \mathbb{R}^{3 \times 3}$ such that, for all v in V,

 $C \boldsymbol{v}_{\mathcal{B}} = \boldsymbol{v}_{\mathcal{B}'}$.

[4] (b) Find the matrix $[F]_{\mathcal{B}',\mathcal{B}'}$ which represents F with respect to $\mathcal{B}', \mathcal{B}'$.

[9] **14.** Consider the surface S in \mathbb{R}^3 whose equation is

$$-x^2 + y^2 - z^2 - 2yz - 6zx + 2xy = 1.$$

Determine as well as you can the nature of the surface S.

Some questions that should be addressed are:

Does S have a centre? Is S connected? Are there axes?

Make it clear how you reach your conclusions.