SIMON FRASER UNIVERSITY					
DEPARTMENT OF MATHEMATICS AND STATISTICS					
Sample Final Exam					
MATH 232					
August 1998, 3 hours					
Name:					
	family name	given name			
Number:					

INSTRUCTIONS

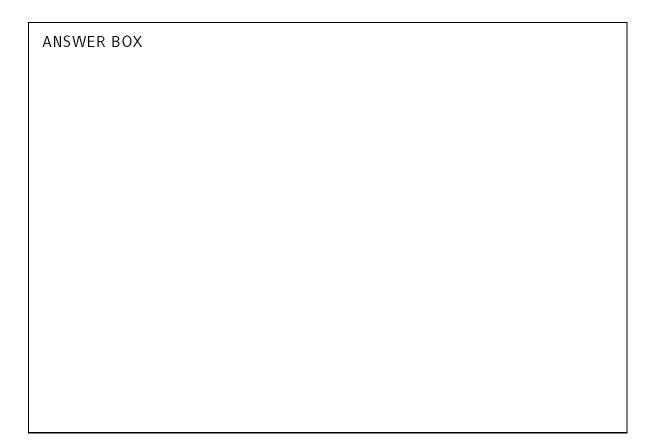
- 1. This exam has 15 questions on 17 pages. Please check to make sure your exam is complete.
- 2. No calculators may be used.
- 3. Please write with a black or blue pen.
- 4. Use the reverse sides of the pages for rough work.
- 5. In each question indicate how you obtain your answer. Unless the question specifically requires it, you need not give details.

Question	Score	Max
1		7
2		7
3		6
4		7
5		6
6		6
7		6
8		7
9		8
10		7
11		6
12		8
13		8
14		5
15		6
Total		100

[4] 1. (a) Define the term "reduced row-echelon matrix".

ANSWER BOX

[3] (b) Find a reduced row-echelon matrix row-equivalent to



 $2. \ \mathrm{Let}$

$$A = \begin{bmatrix} 2 & -1 & 1 & 3 & 1 \\ 0 & 1 & 3 & -2 & 0 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}, \quad x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix}, \text{ and } b = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}.$$

-

[4] (a) Express the general solution of the homogeneous system Ax = 0 as a linear combination of vectors in \mathbb{R}^5 .

ANSWER BOX

[3] (b) Write down the general solution of the nonhomogeneous system Ax = b.

3. The matrix A in $\mathbb{R}^{n \times n}$ is defined to be *invertible* if there exists B in $\mathbb{R}^{n \times n}$ such that

AB = BA = I.

Let $A, C \in \mathbb{R}^{n \times n}$ both be invertible.

[3] (a) Show that AC is invertible.

ANSWER BOX

[3] (b) Show that A^T is invertible.

[3] 4. (a) Explain how to compute the rank of a matrix.

ANSWER BOX

[4] (b) Explain why it is true that

 $\operatorname{rank}(AB) \leq \min(\operatorname{rank}(A), \operatorname{rank}(B))$

for all matrices A, B such that AB is defined.

[6] 5. Find a formula which defines a linear transformation $F : \mathbb{R}^3 \to \mathbb{R}^3$ which satisfies

 $F([1,1,1]) = [0,1,1], \qquad F([1,-1,-1]) = [1,0,0]\,.$

Definition of vector space

A vector space over \mathbb{R} is a set V of vectors together with a distinguished vector $\mathbf{0}$ in V and three functions

$(u,v)\mapsto u+v$	$(u,v\in V)$
$v\mapsto -v$	$(v \in V)$
$(r,v)\mapsto rv$	$(r\in \mathbb{R},v\in V)$

which satisfy

A1	(u+v)+w=u+(v+w)	associative law
A2	u + v = v + u	commutative law
A3	0 + u = u	additive identity
A4	u+(-u)=0	additive inverse
S1	r(u+v) = ru + rv	distributivity
S2	(r+s)u = ru + su	distributivity
S3	r(su) = (rs)u	associative law
$\mathbf{S4}$	1u = u	scale preservation

for all $u, v, w \in V$ and $r, s \in \mathbb{R}$.

[6] 6. From the axioms for a vector space show that for all vectors u, v, w in V,

 $u+v=u+w \Rightarrow v=w$.

7. Let $V = \mathbb{R}^{2 \times 2}$ denote the vector space over \mathbb{R} whose vectors are the 2×2 matrices with entries from \mathbb{R} . Let

$$v_1=\left[egin{array}{cc} 1&1\0&0\end{array}
ight],\;v_2=\left[egin{array}{cc} 0&0\1&1\end{array}
ight],\;v_3=\left[egin{array}{cc} 1&0\1&0\end{array}
ight],\;v_4=\left[egin{array}{cc} 0&1\0&1\end{array}
ight]\,.$$

[3] (a) Show that $\{v_1, v_2, v_3, v_4\}$ is linearly dependent.

ANSWER BOX

[3] (b) Find $u \in V$ such that $\{v_1, v_2, v_3, u\}$ is a basis for V.

[4] 8. (a) Evaluate the determinant

1	0	2	0	3
C) 4	0	5	0
6	6 0	7		8
C	9	0	10	0
11	0	12	0	13

ANSWER BOX

[3] (b) Let \boldsymbol{A} be a square matrix.

State the relationship between det(A) and rank(A).

 $\begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix}$

[4] (a) Find the eigenvalues of A.

[4] (b) Find a matrix C such that $C^{-1}AC$ is a diagonal.

[3] 10. (a) Find the projection of [2, -1, 3] on sp([1, 2, -1]).

ANSWER BOX

[4] (b) Find a formula for the projection of $b = [b_1, b_2, b_3]$ on the subspace sp([1, 1, -1], [-1, 1, 1]).

[3] 11. (a) State three conditions on a matrix $A \in \mathbb{R}^{n \times n}$ which are equivalent to A being an orthogonal matrix.

ANSWER BOX

[3]

(b) Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be an orthogonal linear transformation such that

 $T([1,0]) = [1/2, \sqrt{3}/2].$

Explain why there are only two possibilities for T and describe them.

[8] 12. The following data points are given:

(-2, -8), (-1, -8), (2, 0), (3, 0), (4, 2), (6, 8)

By using a method from linear algebra find the least-squares linear fit for these data points.

Your answer should make it clear what method you are using.

13. Let \mathbb{R} denote the vector space over \mathbb{R} consisting of all functions $f : \mathbb{R} \to \mathbb{R}$. Let V denote the subspace of \mathbb{R} . spanned by $\{1, \sin 2x, \cos 2x\}$. Let

 $\mathcal{B}=\langle 1,\sin 2x,\cos 2x
angle, \ \ \mathcal{B}'=\langle \sin^2 x,\cos^2 x,\sin x\cos x
angle.$

Let $F: V \to V$ be the unique linear transformation which maps \mathcal{B} to \mathcal{B}' in the sense that $F(1) = \sin^2 x$, $F(\sin 2x) = \cos^2 x$, and $F(\cos 2x) = \sin x \cos x$.

[4] (a) Find a matrix $C \in \mathbb{R}^{3 \times 3}$ such that, for all v in V,

 $Cv_{\mathcal{B}} = v_{\mathcal{B}'}$

[4] (b) Find the matrix $[F]_{\mathcal{B},\mathcal{B}}$ which represents F with respect to \mathcal{B}, \mathcal{B} .

[5] 14. Consider the curve in \mathbb{R}^2 whose equation is

$$6x^2 + \sqrt{24}xy + 7y^2 = 1$$
.

Show that this curve is an ellipse and find the length of its major and minor axes.

[6] 15. Consider the surface S in \mathbb{R}^3 whose equation is

 $x^2 + y^2 + z^2 + 2xy + 2yz + 2zx - 3x + z = 1$.

Show that S is cylindrical in the sense that there is a unit vector u such that S is invariant under translation by any scalar multiple of u.