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[4] 1. (a) De�ne the term \reduced row-echelon matrix".

ANSWER BOX

[3] (b) Find a reduced row-echelon matrix row-equivalent to

2
4 2 �3 �1
�1 2 2

4 �4 4

3
5

ANSWER BOX
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2. Let

A =

2
4 2 �1 1 3 1

0 1 3 �2 0

0 0 0 1 1

3
5 ; x =

2
66664

x1

x2

x3

x4

x5

3
77775 ; and b =

2
4 1

0

1

3
5 :

[4] (a) Express the general solution of the homogeneous system Ax = 0 as a linear

combination of vectors in R5.

ANSWER BOX

[3] (b) Write down the general solution of the nonhomogeneous system Ax = b.

ANSWER BOX
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3. The matrix A in Rn�n is de�ned to be invertible if there exists B in Rn�n such

that

AB = BA = I :

Let A; C 2 Rn�n both be invertible.

[3] (a) Show that AC is invertible.

ANSWER BOX

[3] (b) Show that AT is invertible.

ANSWER BOX
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[3] 4. (a) Explain how to compute the rank of a matrix.

ANSWER BOX

[4] (b) Explain why it is true that

rank(AB) � min(rank(A); rank(B))

for all matrices A, B such that AB is de�ned.

ANSWER BOX
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[6] 5. Find a formula which de�nes a linear transformation F : R3 ! R
3 which

satis�es

F ([1; 1; 1]) = [0; 1; 1]; F ([1;�1;�1]) = [1; 0; 0] :

ANSWER BOX



De�nition of vector space

A vector space over R is a set V of vectors together with a distinguished vector 0 in

V and three functions

(u; v) 7! u+ v (u; v 2 V )

v 7! �v (v 2 V )

(r; v) 7! rv (r 2 R; v 2 V )

which satisfy

A1 (u+ v) + w = u+ (v +w) associative law

A2 u+ v = v + u commutative law

A3 0 + u = u additive identity

A4 u+ (�u) = 0 additive inverse

S1 r(u+ v) = ru+ rv distributivity

S2 (r + s)u = ru+ su distributivity

S3 r(su) = (rs)u associative law

S4 1u = u scale preservation

for all u; v; w 2 V and r; s 2 R.
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[6] 6. From the axioms for a vector space show that for all vectors u, v, w in

V ,

u+ v = u+ w ) v = w :

ANSWER BOX
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7. Let V = R
2�2 denote the vector space over R whose vectors are the 2�2 matrices

with entries from R. Let

v1 =

�
1 1

0 0

�
; v2 =

�
0 0

1 1

�
; v3 =

�
1 0

1 0

�
; v4 =

�
0 1

0 1

�
:

[3] (a) Show that fv1; v2; v3; v4g is linearly dependent.

ANSWER BOX

[3] (b) Find u 2 V such that fv1; v2; v3; ug is a basis for V .

ANSWER BOX
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[4] 8. (a) Evaluate the determinant2
66664

1 0 2 0 3

0 4 0 5 0

6 0 7 0 8

0 9 0 10 0

11 0 12 0 13

3
77775

ANSWER BOX

[3] (b) Let A be a square matrix.

State the relationship between det(A) and rank(A).

ANSWER BOX
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9. Let A denote the matrix 2
664
1 0 0 1

0 1 0 1

1 0 0 1

1 1 1 1

3
775

[4] (a) Find the eigenvalues of A.

ANSWER BOX
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[4] (b) Find a matrix C such that C�1AC is a diagonal.

ANSWER BOX
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[3] 10. (a) Find the projection of [2;�1; 3] on sp([1; 2;�1]).

ANSWER BOX

[4] (b) Find a formula for the projection of b = [b1; b2; b3] on the subspace

sp([1; 1;�1]; [�1; 1; 1]).

ANSWER BOX
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[3] 11. (a) State three conditions on a matrix A 2 Rn�n which are equivalent to

A being an orthogonal matrix.

ANSWER BOX

[3] (b) Let T : R2 ! R
2 be an orthogonal linear transformation such that

T ([1;0]) = [1=2;
p
3=2]:

Explain why there are only two possibilities for T and describe them.

ANSWER BOX
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[8] 12. The following data points are given:

(�2;�8); (�1;�8); (2; 0); (3; 0); (4; 2); (6; 8)

By using a method from linear algebra �nd the least-squares linear �t

for these data points.

Your answer should make it clear what method you are using.

ANSWER BOX
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13. Let RR denote the vector space over R consisting of all functions f : R! R. Let

V denote the subspace of RR. spanned by f1; sin 2x; cos 2xg. Let

B = h1; sin 2x; cos 2xi; B0 = hsin2 x; cos2 x; sin x cosxi:

Let F : V ! V be the unique linear transformation which maps B to B0 in the

sense that F (1) = sin2 x, F (sin 2x) = cos2 x, and F (cos 2x) = sin x cos x.

[4] (a) Find a matrix C 2 R3�3 such that, for all v in V ,

CvB = vB0

ANSWER BOX
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[4] (b) Find the matrix [F ]
B;B which represents F with respect to B; B.

ANSWER BOX
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[5] 14. Consider the curve in R2 whose equation is

6x2 +
p
24xy + 7y2 = 1 :

Show that this curve is an ellipse and �nd the length of its major and

minor axes.

ANSWER BOX
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[6] 15. Consider the surface S in R3 whose equation is

x2 + y2 + z2 + 2xy + 2yz + 2zx� 3x+ z = 1 :

Show that S is cylindrical in the sense that there is a unit vector u such

that S is invariant under translation by any scalar multiple of u.

ANSWER BOX

100


