
[4] 1. (a) Define the term "reduced row-echelon matrix".

## ANSWER BOX

[3] (b) Find a reduced row-echelon matrix row-equivalent to

$$
\left[\begin{array}{rrr}
2 & -3 & -1 \\
-1 & 2 & 2 \\
4 & -4 & 4
\end{array}\right]
$$

## ANSWER BOX

2. Let

$$
A=\left[\begin{array}{rrrrr}
2 & -1 & 1 & 3 & 1 \\
0 & 1 & 3 & -2 & 0 \\
0 & 0 & 0 & 1 & 1
\end{array}\right], \quad x=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right], \text { and } b=\left[\begin{array}{c}
1 \\
0 \\
1
\end{array}\right]
$$

[4] (a) Express the general solution of the homogeneous system $\boldsymbol{A} \boldsymbol{x}=\mathbf{0}$ as a linear combination of vectors in $\mathbb{R}^{\mathbf{5}}$.

## ANSWER BOX

[3] (b) Write down the general solution of the nonhomogeneous system $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$.

## ANSWER BOX

3. The matrix $\boldsymbol{A}$ in $\mathbb{R}^{n \times n}$ is defined to be invertible if there exists $\boldsymbol{B}$ in $\mathbb{R}^{n \times n}$ such that

$$
A B=B A=I
$$

Let $A, C \in \mathbb{R}^{n \times n}$ both be invertible.
[3] (a) Show that $A C$ is invertible.

## ANSWER BOX

[3] (b) Show that $A^{T}$ is invertible.

## ANSWER BOX

[3] 4. (a) Explain how to compute the rank of a matrix.

## ANSWER BOX

[4] (b) Explain why it is true that

$$
\operatorname{rank}(\boldsymbol{A} \boldsymbol{B}) \leq \min (\operatorname{rank}(\boldsymbol{A}), \operatorname{rank}(\boldsymbol{B}))
$$

for all matrices $\boldsymbol{A}, \boldsymbol{B}$ such that $\boldsymbol{A} \boldsymbol{B}$ is defined.

## ANSWER BOX

[6] 5. Find a formula which defines a linear transformation $F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ which satisfies

$$
F([1,1,1])=[0,1,1], \quad F([1,-1,-1])=[1,0,0] .
$$

## ANSWER BOX

## Definition of vector space

A vector space over $\mathbb{R}$ is a set $\boldsymbol{V}$ of vectors together with a distinguished vector $\mathbf{0}$ in $\boldsymbol{V}$ and three functions

$$
\begin{aligned}
(u, v) & \mapsto u+v & & (u, v \in V) \\
v & \mapsto-v & & (v \in V) \\
(r, v) & \mapsto r v & & (r \in \mathbb{R}, v \in V)
\end{aligned}
$$

which satisfy

$$
\begin{array}{ll}
\text { A1 }(\boldsymbol{u}+\boldsymbol{v})+\boldsymbol{w}=\boldsymbol{u}+(\boldsymbol{v}+\boldsymbol{w}) & \text { associative law } \\
\text { A2 } \boldsymbol{u}+\boldsymbol{v}=\boldsymbol{v}+\boldsymbol{u} & \text { commutative law } \\
\text { A3 } \mathbf{0}+\boldsymbol{u}=\boldsymbol{u} & \text { additive identity } \\
\text { A4 } \boldsymbol{u}+(-\boldsymbol{u})=\mathbf{0} & \text { additive inverse } \\
\text { S1 } \boldsymbol{r}(\boldsymbol{u}+\boldsymbol{v})=\boldsymbol{r} \boldsymbol{u}+\boldsymbol{r} \boldsymbol{v} & \text { distributivity } \\
\text { S2 }(\boldsymbol{r}+\boldsymbol{s}) \boldsymbol{u}=\boldsymbol{r} \boldsymbol{u}+\boldsymbol{s u} & \text { distributivity } \\
\text { S3 } \boldsymbol{r}(\boldsymbol{s u})=(r s) \boldsymbol{u} & \text { associative law } \\
\text { S4 } \mathbf{1} \boldsymbol{u}=\boldsymbol{u} & \text { scale preservation }
\end{array}
$$

for all $\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w} \in \boldsymbol{V}$ and $\boldsymbol{r}, \boldsymbol{s} \in \mathbb{R}$.
[6] 6. From the axioms for a vector space show that for all vectors $\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}$ in $V$,

$$
u+v=u+w \Rightarrow v=w
$$

## ANSWER BOX

7. Let $\boldsymbol{V}=\mathbb{R}^{2 \times 2}$ denote the vector space over $\mathbb{R}$ whose vectors are the $\mathbf{2} \times \mathbf{2}$ matrices with entries from $\mathbb{R}$. Let

$$
v_{1}=\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right], v_{2}=\left[\begin{array}{ll}
0 & 0 \\
1 & 1
\end{array}\right], v_{3}=\left[\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right], v_{4}=\left[\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right] .
$$

[3] (a) Show that $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ is linearly dependent.

## ANSWER BOX

[3] (b) Find $u \in V$ such that $\left\{v_{1}, v_{2}, v_{3}, u\right\}$ is a basis for $V$.

## ANSWER BOX

[4] 8. (a) Evaluate the determinant
$\left[\begin{array}{rrrrr}1 & 0 & 2 & 0 & 3 \\ 0 & 4 & 0 & 5 & 0 \\ 6 & 0 & 7 & 0 & 8 \\ 0 & 9 & 0 & 10 & 0 \\ 11 & 0 & 12 & 0 & 13\end{array}\right]$

## ANSWER BOX

[3] (b) Let $\boldsymbol{A}$ be a square matrix.
State the relationship between $\operatorname{det}(A)$ and $\operatorname{rank}(A)$.

## ANSWER BOX

9. Let $\boldsymbol{A}$ denote the matrix
$\left[\begin{array}{llll}1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1\end{array}\right]$
[4] (a) Find the eigenvalues of $\boldsymbol{A}$.

## ANSWER BOX

[4] (b) Find a matrix $C$ such that $C^{-1} A C$ is a diagonal.

## ANSWER BOX

[3] 10. (a) Find the projection of $[2,-1,3]$ on $\operatorname{sp}([1,2,-1])$.

ANSWER BOX
[4]
(b) Find a formula for the projection of $b=\left[b_{1}, b_{2}, b_{3}\right]$ on the subspace $\operatorname{sp}([1,1,-1],[-1,1,1])$.

## ANSWER BOX

[3] 11. (a) State three conditions on a matrix $A \in \mathbb{R}^{n \times n}$ which are equivalent to $A$ being an orthogonal matrix.

## ANSWER BOX

[3] (b) Let $\boldsymbol{T}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be an orthogonal linear transformation such that

$$
T([1,0])=[1 / 2, \sqrt{3} / 2]
$$

Explain why there are only two possibilities for $T$ and describe them.

## ANSWER BOX

[8] 12. The following data points are given:

$$
(-2,-8),(-1,-8),(2,0),(3,0),(4,2),(6,8)
$$

By using a method from linear algebra find the least-squares linear fit for these data points.

Your answer should make it clear what method you are using.

## ANSWER BOX

13. Let ${ }^{\mathbb{R}} \mathbb{R}$ denote the vector space over $\mathbb{R}$ consisting of all functions $f: \mathbb{R} \rightarrow \mathbb{R}$. Let $\boldsymbol{V}$ denote the subspace of ${ }^{\mathbb{R}} \mathbb{R}$. spanned by $\{\mathbf{1}, \sin 2 \boldsymbol{x}, \boldsymbol{\operatorname { c o s }} \mathbf{2 \boldsymbol { x }}\}$. Let

$$
\mathcal{B}=\langle 1, \sin 2 x, \cos 2 x\rangle, \quad \mathcal{B}^{\prime}=\left\langle\sin ^{2} x, \cos ^{2} x, \sin x \cos x\right\rangle
$$

Let $\boldsymbol{F}: \boldsymbol{V} \rightarrow \boldsymbol{V}$ be the unique linear transformation which maps $\boldsymbol{\mathcal { B }}$ to $\boldsymbol{\mathcal { B }}^{\prime}$ in the sense that $\boldsymbol{F}(\mathbf{1})=\sin ^{2} \boldsymbol{x}, \boldsymbol{F}(\sin 2 \boldsymbol{x})=\cos ^{2} \boldsymbol{x}$, and $\boldsymbol{F}(\cos 2 \boldsymbol{x})=\sin \boldsymbol{x} \cos \boldsymbol{x}$.
[4]
(a) Find a matrix $C \in \mathbb{R}^{3 \times 3}$ such that, for all $v$ in $V$,

$$
C v_{\mathcal{B}}=v_{\mathcal{B}^{\prime}}
$$

## ANSWER BOX

[4] (b) Find the matrix $[\boldsymbol{F}]_{\mathcal{B}, \mathcal{B}}$ which represents $\boldsymbol{F}$ with respect to $\mathcal{B}, \mathcal{B}$.

ANSWER BOX
[5] 14. Consider the curve in $\mathbb{R}^{2}$ whose equation is

$$
6 x^{2}+\sqrt{24} x y+7 y^{2}=1
$$

Show that this curve is an ellipse and find the length of its major and minor axes.

## ANSWER BOX

[6] 15. Consider the surface $\boldsymbol{S}$ in $\mathbb{R}^{\mathbf{3}}$ whose equation is

$$
x^{2}+y^{2}+z^{2}+2 x y+2 y z+2 z x-3 x+z=1
$$

Show that $S$ is cylindrical in the sense that there is a unit vector $\boldsymbol{u}$ such that $S$ is invariant under translation by any scalar multiple of $\boldsymbol{u}$.

## ANSWER BOX

