DEPAR	SIMON FRASEF	R UNIVERSITY MATICS AND STATISTICS
	Final I	Exam
	MATH	232
	April 8, 1999, 8	:30-11:30 a.m.
Name:		
	family name	given name
Number:		

INSTRUCTIONS

- 1. This exam has 14 questions on 12 pages. Please check to make sure your exam is complete.
- 2. Write your final answer in the answer box when one is provided.
- 3. No calculators or other computing devices may be used.
- 4. Please write with a black or blue pen.
- 5. If you need more room, use the reverse side of the **previous page** to show your work.
- 6. In each question indicate how you obtain your answer. You may lose points if your work is poorly presented.

Question	Score	Max
1		7
2		7
3		8
4		8
5		6
6		4
7		6
8		4
9		10
10		8
11		10
12		10
13		6
14		6
Total		100

[4] 1. (a) Define the term "reduced row-echelon matrix".

ANSWER BOX [3] (b) Find a reduced rowechelon matrix rowequivalent to $\begin{bmatrix} 0 & 2 & 1 & -1 \\ 1 & 1 & -2 & 1 \\ -1 & 1 & 3 & -1 \end{bmatrix}$ ANSWER

[7] **2**. Let

$$A = \begin{bmatrix} 0 & 2 & 1 & 2 \\ 1 & 0 & -1 & -1 \\ 0 & 2 & 1 & 2 \\ 1 & 4 & 1 & 3 \end{bmatrix}, \qquad \boldsymbol{b} = [1, -2, 1, 0]$$

Find the general solution of the system Ax = b.

ANSWER			

3. Let V denote the subspace of \mathbb{R}^6 spanned by

$$a_{1} = [2, -1, 3, 4, 1, 2]$$

$$a_{2} = [-2, 5, 3, 2, 1, -4]$$

$$a_{3} = [2, 4, 6, 5, 2, 1]$$

$$a_{4} = [1, -1, 1, -1, 2, 2]$$

$$a_{5} = [1, 8, 10, 2, 5, -1]$$

$$a_{6} = [3, 0, 0, 2, 1, 5]$$

and $A = \begin{bmatrix} a_1 & a_2 & a_3 & a_4 & a_5 & a_6 \end{bmatrix}$ be the 6×6 matrix whose columns are $a_1, a_2, a_3, a_4, a_5, a_6$.

By elementary row operations \boldsymbol{A} is converted to

	1	0	3	0	0	-1]
	0	1	1	0	0	-1
TT	0	0	0	1	0	-1
H =	0	0	0	0	1	0
	0	0	0	0	0	0
	0	0	0	0	0	0

- (a) What is the dimension of V?
- [3] (b) Write down a basis for V.

ANSWER

[3] (c) Write down a basis for the nullspace of A.

ANSWER	

ANSWER

4. Let $T: \mathbb{R}^4 \to \mathbb{R}^3$ be a linear transformation.

[2]	(a)	Define $\ker(T)$.	ANSWER	
[2]	(b)	Define range (T) .	ANSWER	
[4]	(c)	lt is given that		
		Т	P([1, 0, 0, 0]) = [1, 2, 3],	T([1, 1, 0, 0]) = [2, 3, 4]
		Т	[([1, 1, 1, 0]) = [3, 4, 5],	T([1, 1, 1, 1]) = [4, 5, 6].
		Find the standard marginal representation of T .	trix	ANSWER

[6] 5. On a separate sheet circulated with the exam you have the definition of a vector space over $\mathbb R$.

Let V be a vector space over \mathbb{R} .

From the axioms listed on the sheet, prove that, for all vectors \boldsymbol{a} , in V,

 $-\boldsymbol{a} = (-1)\boldsymbol{a}$.

Hint: one might start by proving that 0a = 0 for all $a \in V$.

ANSWER

[4] 6. Let ${}^{\mathbb{R}}\mathbb{R}$ denote the vector space of all functions $f:\mathbb{R} o\mathbb{R}$ and

 $V = \left\{ f \in {}^{\mathbb{R}}\mathbb{R} : \left(\forall x, \, y \in \mathbb{R} \right) (xy > 0 \text{ implies } f(x) = f(y) \right\} \ .$

Find a basis of V as a subspace of $\mathbb{R}\mathbb{R}$.

ANSWER

[6] 7. Let $A \in \mathbb{R}^{n \times n}$ and ρ be an elementary row operation.

Describe how det $\rho(A)$ depends on ρ and det(A).

ANSWER

[4]	8.	Evaluate	the	determinant
-----	----	----------	-----	-------------

Γ	1	1	2	0	3
	0	0	-1	1	2
	1	1	-2	1	0
	0	1	1	0	2
	1	0	2	0	3

SHOW YOUR WORK

ANSWER

3	1	-1]
1	3	-1
2	-1	2

[4] (a) Find the eigenvalues of A.

9. Let A denote the matrix

ANSWER	

[4] (b) Find the eigenspaces of A.

	ANSWER	
-		
ANSWER		

[2] (c) Is A diagonalizable? Justify your answer.

		3/10	4/10	3/10	
10.	Let \boldsymbol{A} denote the matrix	1/10	2/10	1/10	
		6/10	4/10	6/10	

It is given that the eigenvalues of A are $0,\ 1,\ 1/10.$

[4]	(a)	Find C such that $C^{-1}AC$ is a diagonal matrix.	ANSWER
[4]	(b)	Compute $\lim_{n\to\infty} A^n$.	ANSWER

11. Let W denote the subspace of \mathbb{R}^4 defined by W = sp([1, 1, -1, 1], [1, 1, 0, 0]). Let $\boldsymbol{b} = [b_1, b_2, b_3, b_4]$ be a general vector in \mathbb{R}^4 .

[3]	(a)	Find the orthogonal complement W^{\perp} of W .	ANSWER
[3]	(b)	Find an orthogonal basis for W .	ANSWER
[4]	(c)	Find b_W the projection of b on W . Your answer should give the components of b_W explicitly in terms of b_1 , b_2 , b_3 , b_4 .	ANSWER

12. Let

$$B_1 = \begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix} \quad B_2 = \begin{bmatrix} 0 & 0 \\ 1 & -1 \end{bmatrix} \quad B_3 = \begin{bmatrix} 1 & 0 \\ -1 & 0 \end{bmatrix}$$
$$B_4 = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \quad B_5 = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \quad B_6 = \begin{bmatrix} 0 & 1 \\ 0 & -1 \end{bmatrix}$$

and

$$\mathcal{B} = \langle B_1, B_2, B_3 \rangle \qquad \mathcal{B}' = \langle B_4, B_5, B_6 \rangle.$$

Let V denote the subspace of $\mathbb{R}^{2 \times 2}$ of which \mathcal{B} and \mathcal{B}' are ordered bases. Let $T: V \to V$ be the linear operator defined by

$$T(X) = X \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \qquad (X \in V) \; .$$

[5] (a) Compute the change of basis matrix $C_{\mathcal{B},\mathcal{B}'}$.

ANSWER

(b)	Compute the matrix	$[T]_{\mathcal{B}}$
	which represents T	with
	respect to $\mathcal B$.	

ANSWER		

SHOW YOUR WORK

[5]

[6] **13.** Find a rotation of \mathbb{R}^3 which diagonalizes the quadratic form $2x^2 + 3y^2 + 2z^2 + 2xy + 2yz$.

[6] 14. Explain briefly the role of diagonalization of 2×2 matrices in classifying curves in \mathbb{R}^2 whose equations have the form

$$ax^{2} + 2bxy + cy^{2} + dx + ey + f = 0$$

with $a, b, c, d, e, f \in \mathbb{R}$.

WRITE YOUR ANSWER HERE