SIMON FRASER UNIVERSITY
DEPARTMENT OF MATHEMATICS AND STATISTICS
Final Exam
MATH 232
April 8, 1999, 8:30-11:30 a.m.
Name:family name Number:

Question	Score	Max
1		7
2		7
3		8
4		8
5		6
6		4
7		6
8		4
9		10
10		8
11		10
12		10
13		6
14		6
Total		100

2. Write your final answer in the answer box when one is 100 provided.
3. No calculators or other computing devices may be used.
4. Please write with a black or blue pen.
5. If you need more room, use the reverse side of the previous page to show your work.
6. In each question indicate how you obtain your answer. You may lose points if your work is poorly presented.
[4] 1. (a) Define the term "reduced row-echelon matrix".
\square
[3] (b) Find a reduced row- ANSWER echelon matrix rowequivalent to

$$
\left[\begin{array}{rrrr}
0 & 2 & 1 & -1 \\
1 & 1 & -2 & 1 \\
-1 & 1 & 3 & -1
\end{array}\right]
$$

ANSWER

SHOW YOUR WORK
[7] 2. Let

$$
A=\left[\begin{array}{rrrr}
0 & 2 & 1 & 2 \\
1 & 0 & -1 & -1 \\
0 & 2 & 1 & 2 \\
1 & 4 & 1 & 3
\end{array}\right], \quad \boldsymbol{b}=[1,-2,1,0]
$$

Find the general solution of the

ANSWER

SHOW YOUR WORK

3. Let V denote the subspace of \mathbb{R}^{6} spanned by

$$
\begin{aligned}
& \boldsymbol{a}_{1}=[2,-1,3,4,1,2] \\
& \boldsymbol{a}_{2}=[-2,5,3,2,1,-4] \\
& \boldsymbol{a}_{3}=[2,4,6,5,2,1] \\
& \boldsymbol{a}_{4}=[1,-1,1,-1,2,2] \\
& \boldsymbol{a}_{5}=[1,8,10,2,5,-1] \\
& \boldsymbol{a}_{6}=[3,0,0,2,1,5]
\end{aligned}
$$

and $A=\left[\begin{array}{llllll}\boldsymbol{a}_{1} & \boldsymbol{a}_{2} & \boldsymbol{a}_{3} & \boldsymbol{a}_{4} & \boldsymbol{a}_{5} & \boldsymbol{a}_{6}\end{array}\right]$ be the 6×6 matrix whose columns are $\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \boldsymbol{a}_{3}, \boldsymbol{a}_{4}, \boldsymbol{a}_{5}, \boldsymbol{a}_{6}$. By elementary row operations A is converted to

$$
H=\left[\begin{array}{rrrrrr}
1 & 0 & 3 & 0 & 0 & -1 \\
0 & 1 & 1 & 0 & 0 & -1 \\
0 & 0 & 0 & 1 & 0 & -1 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

[2] (a) What is the dimension of V ?
[3] (b) Write down a basis for V. \square
[3] (c) Write down a basis for the nullspace of A.

ANSWER

4. Let $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$ be a linear transformation.
[2]
(a) Define $\operatorname{ker}(T)$.

> ANSWER
[2] (b) Define range (T). \qquad
[4] (c) It is given that

$$
\begin{array}{ll}
T([1,0,0,0])=[1,2,3], & T([1,1,0,0])=[2,3,4] \\
T([1,1,1,0])=[3,4,5], & T([1,1,1,1])=[4,5,6]
\end{array}
$$

Find the standard matrix representation of T.

ANSWER

[6] 5. On a separate sheet circulated with the exam you have the definition of a vector space over \mathbb{R}.
Let V be a vector space over \mathbb{R}.
From the axioms listed on the sheet, prove that, for all vectors a, in V,

$$
-\boldsymbol{a}=(-1) \boldsymbol{a}
$$

Hint: one might start by proving that $0 \boldsymbol{a}=\mathbf{0}$ for all $\boldsymbol{a} \in V$.

ANSWER

[4] 6. Let $\mathbb{R}_{\mathbb{R}}$ denote the vector space of all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ and

$$
V=\left\{f \in \mathbb{R}^{\mathbb{R}}:(\forall x, y \in \mathbb{R})(x y>0 \text { implies } f(x)=f(y))\right\}
$$

Find a basis of V as a subspace of $\mathbb{R}_{\mathbb{R}}$.

ANSWER
[6] 7. Let $A \in \mathbb{R}^{n \times n}$ and ρ be an elementary row operation.
Describe how $\operatorname{det} \rho(A)$ depends on ρ and $\operatorname{det}(A)$.

ANSWER

[4] 8. Evaluate the determinant
$\left[\begin{array}{rrrrr}1 & 1 & 2 & 0 & 3 \\ 0 & 0 & -1 & 1 & 2 \\ 1 & 1 & -2 & 1 & 0 \\ 0 & 1 & 1 & 0 & 2 \\ 1 & 0 & 2 & 0 & 3\end{array}\right]$

ANSWER
\square
9. Let A denote the matrix

$$
\left[\begin{array}{rrr}
3 & 1 & -1 \\
1 & 3 & -1 \\
2 & -1 & 2
\end{array}\right]
$$

[4] (a) Find the eigenvalues of A.
[4] (b) Find the eigenspaces of A.
ANSWER
[2] (c) Is A diagonalizable?
Justify your answer.
ANSWER

SHOW YOUR WORK
10. Let A denote the matrix $\left[\begin{array}{lll}3 / 10 & 4 / 10 & 3 / 10 \\ 1 / 10 & 2 / 10 & 1 / 10 \\ 6 / 10 & 4 / 10 & 6 / 10\end{array}\right]$.

It is given that the eigenvalues of A are $0,1,1 / 10$.
[4] (a) Find C such that $C^{-1} A C$ is a diagonal matrix.

ANSWER

[4] (b) Compute $\lim _{n \rightarrow \infty} A^{n}$.
ANSWER
11. Let W denote the subspace of \mathbb{R}^{4} defined by $W=\operatorname{sp}([1,1,-1,1],[1,1,0,0])$. Let $\boldsymbol{b}=\left[b_{1}, b_{2}, b_{3}, b_{4}\right]$ be a general vector in \mathbb{R}^{4}.
[3] (a) Find the orthogonal complement W^{\perp} of W.
ANSWER
[3] (b) Find an orthogonal basis for W.

ANSWER
[4] (c) Find b_{W} the projection of b on W. Your answer should give the components of b_{W} explicitly in terms of b_{1}, b_{2}, b_{3}, b_{4}.
ANSWER
12. Let

$$
\left.\begin{array}{ll}
B_{1}=\left[\begin{array}{rr}
1 & -1 \\
0 & 0
\end{array}\right] & B_{2}=\left[\begin{array}{rr}
0 & 0 \\
1 & -1
\end{array}\right]
\end{array} B_{3}=\left[\begin{array}{rr}
1 & 0 \\
-1 & 0
\end{array}\right]\right] .\left[\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right] \quad B_{5}=\left[\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right] \quad B_{6}=\left[\begin{array}{rr}
0 & 1 \\
0 & -1
\end{array}\right] .
$$

and

$$
\mathcal{B}=\left\langle B_{1}, B_{2}, B_{3}\right\rangle \quad \mathcal{B}^{\prime}=\left\langle B_{4}, B_{5}, B_{6}\right\rangle .
$$

Let V denote the subspace of $\mathbb{R}^{2 \times 2}$ of which \mathcal{B} and \mathcal{B}^{\prime} are ordered bases. Let $T: V \rightarrow V$ be the linear operator defined by

$$
T(X)=X\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right] \quad(X \in V) .
$$

[5]
(a) Compute the change of basis matrix $C_{B, \mathcal{B}^{\prime}}$.

ANSWER

[5] (b) Compute the matrix $[T]_{\mathcal{B}}$ which represents T with respect to \mathcal{B}.

ANSWER

[6] 13. Find a rotation of \mathbb{R}^{3}

ANSWER

SHOW YOUR WORK

[6] 14. Explain briefly the role of diagonalization of 2×2 matrices in classifying curves in \mathbb{R}^{2} whose equations have the form

$$
a x^{2}+2 b x y+c y^{2}+d x+e y+f=0
$$

with $a, b, c, d, e, f \in \mathbb{R}$.

WRITE YOUR ANSWER HERE

