	FRASER UNIVERSITY MATHEMATICS AND STATISTICS
	Final Exam
	MATH 232
December 1	15, 1999, 3:30 – 6:30 p.m.
Name:	
family name	given name
Number:	

INSTRUCTIONS

- 1. This exam has 14 questions on 16 pages. Please check to make sure your exam is complete.
- 2. Write your final answer in the answer box.
- In each question indicate how you obtain your answer.
 You may lose points if your work is poorly presented.
- 4. If you need more room, use the reverse side of the **previous page** to show your work.
- 5. No calculators or other computing devices may be used.
- 6. Please write with a black or blue pen.

Question	Score	Max
1		6
2		6
3		6
4		7
5		5
6		6
7		10
8		8
9		4
10		11
11		9
12		8
13		7
14		7
Total		100

Т

٦

[4] 1. (a) Give a precise description of the kinds of row operation which are permitted in bringing a matrix to reduced row-echelon form.

ANSWER		

[2] (b) **Define an elementary matrix**.

ANSWER

ROUGH WORK IF REQUIRED

[6] 2.	Find a basis for the set of solutions to the system	ANSWER
	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	

3. Let $V = \mathsf{sp}(\boldsymbol{a}_1, \boldsymbol{a}_2, \boldsymbol{a}_3, \boldsymbol{a}_4, \boldsymbol{a}_5)$ denote the subspace of \mathbb{R}^5 spanned by

$$a_{1} = [2, 2, 1, -1, 0]$$

$$a_{2} = [-1, 1, 1, 2, 2]$$

$$a_{3} = [7, 1, -1, -8, -6]$$

$$a_{4} = [0, 8, 6, 6, 8]$$

$$a_{5} = [1, 1, 1, -1, -3]$$

and $A = \begin{bmatrix} a_1 & a_2 & a_3 & a_4 & a_5 \end{bmatrix}$ be the 5×5 matrix whose columns are a_1, a_2, a_3, a_4, a_5 .

By elementary row operations \boldsymbol{A} is converted to

	1	0	$\begin{array}{c} 2\\ -3\\ 0\\ 0\\ 0\\ 0\end{array}$	2	0]
	0	1	-3	4	0	
H =	0	0	0	0	1	
	0	0	0	0	0	
	0	0	0	0	0	

[2]	(a)	Write down	а	basis	for	V	
-----	-----	------------	---	-------	-----	---	--

ANSWER			

[2] (b) Write down a basis for the row space of A.

_				
	ANSWER			
L				

[2] (c) Determine the rank of A. Give a reason for your answer.

ROUGH WORK IF REQUIRED

(use the back of page 2)

[7] 4. On a separate sheet circulated with this exam you find the definition of a vector space over $\mathbb R$.

Let V be a vector space over \mathbb{R} . From the axioms listed in the definition, prove that, for any two vectors v and w in V there exists a unique vector x in V such that v + x = w.

ANSWER

ROUGH WORK

[5] 5. Let V be a vector space over \mathbb{R} . Let W_1 and W_2 be two subspaces of V. Prove that their intersection $W_1 \cap W_2$ is a subspace of V.

ANSWER	

ROUGH WORK

[6] 6. Let $\mathbb{R}^{2 \times 2}$ denote the vector space of all 2×2 real matrices, using as vector addition and scalar multiplication the usual addition of matrices and multiplication of a matrix by a scalar.

Given are four matrices

$$\boldsymbol{v}_1 = \begin{bmatrix} 1 & 2 \\ -1 & 2 \end{bmatrix}, \quad \boldsymbol{v}_2 = \begin{bmatrix} 0 & 2 \\ -1 & 4 \end{bmatrix}, \quad \boldsymbol{v}_3 = \begin{bmatrix} 0 & -1 \\ 3 & 1 \end{bmatrix}, \quad \boldsymbol{v}_4 = \begin{bmatrix} 0 & -3 \\ 2 & 0 \end{bmatrix}.$$

It is given that $\mathcal{B}=(m{v}_1,\ m{v}_2,\ m{v}_3,\ m{v}_4)$ is an ordered basis for $\mathbb{R}^{2 imes 2}$

Let

$$\boldsymbol{v} = \left[\begin{array}{cc} 2 & -1 \\ 6 & 6 \end{array} \right]$$

Find the coordinate vector $v_{\mathcal{B}}$ of v relative to \mathcal{B} .

ANSWER

7. Let F be the vector space of all functions mapping \mathbb{R} to \mathbb{R} . Let W be the subspace of F spanned by the four functions 1, x, e^x and xe^x . It is given that $\mathcal{B} = (1, x, e^x, xe^x)$ is an ordered basis for W.

Given are two linear transformations $T_1~:~W\to W$ and $T_2~:~W\to W$ defined by

 $T_1(f) = f'$ (the derivative of f with respect to x) for all $f \in W$

 $T_2(f) = f''$ (the second derivative of f with respect to x) for all $f \in W$.

Let A_1 be the matrix representation of T_1 relative to \mathcal{B}, \mathcal{B} and let A_2 be the matrix representation of T_2 relative to \mathcal{B}, \mathcal{B} .

[5]

(a) Find the matrix A_1 . ANSWER

(Question 7. continues here.)

[3] (b) Decide whether the transformation T_1 is invertible. Justify your answer.

ANSWER			

[2] (c) Use the composition of linear transformations to discover a simple relation between A_2 and A_1 . Justify your answer. Do not compute A_2 explicitly, just express it in terms of A_1 .

ANSWER

ROUGH WORK IF REQUIRED

ANSWER

[4] 8. (a) Given are three points P = (3, -1), Q = (2, 2) and R = (-1, 7). Find the area of the triangle PQR.

[4] (b) State the row-interchange property for determinants of square matrices. Use it to prove:

If two rows of a square matrix A are equal, then det(A) = 0.

ANSWER

[4] 9. Evaluate the determinant

$$\begin{vmatrix} 0 & 3 & 3 & 5 \\ 1 & 0 & -2 & 1 \\ 0 & 0 & 3 & -4 \\ -2 & 0 & 1 & 7 \end{vmatrix} .$$

ANSWER

10. Let

$$A = \left[\begin{array}{rrr} 1 & -2 & 1 \\ 0 & 1 & -1 \\ 0 & 2 & -2 \end{array} \right] \; .$$

[5] (a) Find the eigenvalues and corresponding eigenspaces of A.

(Question 10. continues here.)

- [3]
- (b) Use diagonalization to compute A^{2000} . Give your answer in the form of a single 3×3 matrix.

ANSWER

[3] (c) **Decide whether the** matrix

SHOW YOUR WORK

$$B = \left[\begin{array}{cc} 4 & 3 \\ 0 & 4 \end{array} \right]$$

is diagonalizable. Justify your answer.

ANSWER

[2] **11.** (a) Let a = [2, 1, -1] and b = [-1, 3, 0]. Find the projection of b on sp(a).

[3] (b) Let W be the subspace of \mathbb{R}^3 defined by $W = \{ [x, y, z] \in \mathbb{R}^3 \mid x + y - z = 0 \}.$

Write down the basis for $W^{\perp},$ the orthogonal complement of W.

[4]

(c) Let c = [2, 1, 6]. Find the projection of c on W.

SHOW YOUR WORK (use the back of the previous page if necessary)

ANSWER	

ANSWER

ANSWER		

12. Let $V = sp(a_1, a_2, a_3)$ be the subspace of \mathbb{R}^4 spanned by the vectors $a_1 = [1, 0, 0, 1]$, $a_2 = [1, 1, 0, 1]$ and $a_3 = [0, 1, -1, 0]$.

[6]	(a)	Find an orthogonal basis for V.	ANSWER
[2]	(b)	Use your answer to part (a) to find an or- thonormal basis for V .	ANSWER

SHOW YOUR WORK (use the back of the previous page if necessary)

[7] 13. The following data points are given:

(-2,0), (-1,1), (0,3), (1,6).

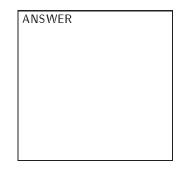
Find the least-squares linear fit for these data points.

ANSWER

14. Let $E = (e_1, e_2)$ be the standard ordered basis for \mathbb{R}^2 . Let $b_1 = [2, 1]$, $b_2 = [-3, -2]$ and let $B = (b_1, b_2)$ be an ordered basis for \mathbb{R}^2 .

Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation defined by $T([x_1, x_2]) = [x_1 + x_2, x_1 - x_2]$ for every $[x_1, x_2] \in \mathbb{R}^2$.

[2] (a) Write down the standard matrix representation of T.



atrix from E to B .	ANSWER
T relative to B .	ANSWER

[2] (b) Find the change-of-coordinates matrix from *E* to *B*.

[3] (c) Find the matrix representation of T relative to B.