

Question	Score	Max
1		6
2		6
3		6
4		7
5		5
6		6
7		10
8		8
9		4
10		11
11		9
12		8
13		7
14		7
Total		100

2. Write your final answer in the answer box.
3. In each question indicate how you obtain your answer. You may lose points if your work is poorly presented.
4. If you need more room, use the reverse side of the previous page to show your work.
5. No calculators or other computing devices may be used.
6. Please write with a black or blue pen.
[4] 1. (a) Give a precise description of the kinds of row operation which are permitted in bringing a matrix to reduced row-echelon form.
\square
[2] (b) Define an elementary matrix.

ANSWER

[6] 2. Find a basis for the set of solutions to the

SHOW YOUR WORK
3. Let $V=\operatorname{sp}\left(\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \boldsymbol{a}_{3}, \boldsymbol{a}_{4}, \boldsymbol{a}_{5}\right)$ denote the subspace of \mathbb{R}^{5} spanned by

$$
\begin{aligned}
& \boldsymbol{a}_{1}=[2,3,1,-1,0] \\
& \boldsymbol{a}_{2}=[-1,1,1,2,2] \\
& \boldsymbol{a}_{3}=[7,3,-1,-8,-6] \\
& \boldsymbol{a}_{4}=[0,10,6,6,8] \\
& \boldsymbol{a}_{5}=[1,-1,1,-1,-3]
\end{aligned}
$$

and $A=\left[\begin{array}{lllll}\boldsymbol{a}_{1} & \boldsymbol{a}_{2} & \boldsymbol{a}_{3} & \boldsymbol{a}_{4} & \boldsymbol{a}_{5}\end{array}\right]$ be the 5×5 matrix whose columns are $\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \boldsymbol{a}_{3}, \boldsymbol{a}_{4}, \boldsymbol{a}_{5}$.
By elementary row operations A is converted to

$$
H=\left[\begin{array}{rrrrr}
1 & 0 & 2 & 2 & 0 \\
0 & 1 & -3 & 4 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

[2]
(a) Write down a basis for V.

ANSWER

[2]
(b) Write down a basis for the row space of A. \square
[2]
(c) Determine the rank of A. Give a reason for your answer.

[7] 4. On a separate sheet circulated with this exam you find the definition of a vector space over \mathbb{R}.
Let V be a vector space over \mathbb{R}. From the axioms listed in the definition, prove that, for any two vectors v and w in V there exists a unique vector x in V such that $v+x=w$.

ANSWER

ROUGH WORK

[5] 5. Let V be a vector space over \mathbb{R}. Let W_{1} and W_{2} be two subspaces of V. Prove that their intersection $W_{1} \cap W_{2}$ is a subspace of V.

ANSWER

[6] 6. Let $\mathbb{R}^{2 \times 2}$ denote the vector space of all 2×2 real matrices, using as vector addition and scalar multiplication the usual addition of matrices and multiplication of a matrix by a scalar.

Given are four matrices

$$
\boldsymbol{v}_{1}=\left[\begin{array}{rr}
1 & 2 \\
-1 & 2
\end{array}\right], \quad \boldsymbol{v}_{2}=\left[\begin{array}{rr}
0 & 2 \\
-1 & 4
\end{array}\right], \quad \boldsymbol{v}_{3}=\left[\begin{array}{rr}
0 & -1 \\
3 & 1
\end{array}\right], \quad \boldsymbol{v}_{4}=\left[\begin{array}{rr}
0 & -3 \\
2 & 0
\end{array}\right]
$$

It is given that $\mathcal{B}=\left(\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}, \boldsymbol{v}_{4}\right)$ is an ordered basis for $\mathbb{R}^{2 \times 2}$.
Let

$$
\boldsymbol{v}=\left[\begin{array}{rr}
2 & -1 \\
8 & 3
\end{array}\right]
$$

Find the coordinate vector $v_{\mathcal{B}}$ of v relative to \mathcal{B}.
ANSWER

SHOW YOUR WORK
7. Let F be the vector space of all functions mapping \mathbb{R} to \mathbb{R}. Let W be the subspace of F spanned by the four functions $1, x, e^{x}$ and $x e^{x}$. It is given that $\mathcal{B}=\left(1, x, e^{x}, x e^{x}\right)$ is an ordered basis for W.

Given are two linear transformations $T_{1}: W \rightarrow W$ and $T_{2}: W \rightarrow W$ defined by

$$
\begin{aligned}
& T_{1}(f)=f^{\prime} \text { (the derivative of } f \text { with respect to } x \text {) for all } f \in W \\
& T_{2}(f)=f^{\prime \prime} \text { (the second derivative of } f \text { with respect to } x \text {) for all } f \in W \text {. }
\end{aligned}
$$

Let A_{1} be the matrix representation of T_{1} relative to \mathcal{B}, \mathcal{B} and let A_{2} be the matrix representation of T_{2} relative to \mathcal{B}, \mathcal{B}.
[5] (a) Find the matrix A_{1}.
ANSWER
(Question 7. continues here.)
[3] (b) Decide whether the transformation T_{1} is invertible. Justify your answer.

ANSWER

[2] (c) Use the composition of linear transformations to discover a simple relation between A_{2} and A_{1}. Justify your answer. Do not compute A_{2} explicitly, just express it in terms of A_{1}.

ANSWER

[4] 8. (a) Given are three points $P=(3,-1), Q=(2,2)$ and $R=(-1,5)$. Find the area of the triangle $P Q R$.
[4] (b) State the row-interchange property for determinants of square matrices. Use it to prove:

If two rows of a square matrix A are equal, then $\operatorname{det}(A)=0$.

ANSWER

SHOW YOUR WORK
[4] 9. Evaluate the determinant
ANSWER

$$
\left|\begin{array}{rrrr}
0 & 2 & 3 & 5 \\
1 & 0 & -2 & 1 \\
0 & 0 & 3 & -4 \\
-3 & 0 & 1 & 7
\end{array}\right| .
$$

SHOW YOUR WORK
10. Let

$$
A=\left[\begin{array}{rrr}
1 & -2 & 1 \\
0 & 1 & -1 \\
0 & 2 & -2
\end{array}\right]
$$

[5] (a) Find the eigenvalues
ANSWER
and corresponding eigenspaces of A.

SHOW YOUR WORK

(Question 10. continues here.)
[3]
(b) Use diagonalization to compute A^{2000}. Give your answer in the form of a single 3×3 matrix.
[3]
(c) Decide whether the ANSWER matrix

$$
B=\left[\begin{array}{rr}
3 & -2 \\
0 & 3
\end{array}\right]
$$

is diagonalizable.
is diagonalizable.
Justify your answer.

ANSWER

ANS
\square
[2] 11. (a) Let $\boldsymbol{a}=[1,2,-1]$ and $\boldsymbol{b}=[-1,3,0]$. Find the projection of \boldsymbol{b} on $\mathrm{sp}(\boldsymbol{a})$.
[3] (b) Let W be the subspace of \mathbb{R}^{3} defined by

$$
W=\left\{[x, y, z] \in \mathbb{R}^{3} \mid x-y+z=0\right\}
$$

Write down the basis for W^{\perp}, the orthogonal complement of W.

ANSWER

[4] (c) Let $\boldsymbol{c}=[2,1,5]$. Find the projection of \boldsymbol{c} on W.

ANSWER
12. Let $V=\operatorname{sp}\left(\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \boldsymbol{a}_{3}\right)$ be the subspace of \mathbb{R}^{4} spanned by the vectors $\boldsymbol{a}_{1}=[1,0,0,1], \boldsymbol{a}_{2}=[1,1,0,1]$ and $\boldsymbol{a}_{3}=[0,1,-1,0]$.
[6]
(a) Find an orthogonal basis for V.

ANSWER
[2]
(b) Use your answer to part (a) to find an orthonormal basis for V.

ANSWER

SHOW YOUR WORK (use the back of the previous page if necessary)
[7] 13. The following data points are given:

$$
(-1,0),(0,1),(1,3),(2,6)
$$

Find the least-squares linear fit for these data points.

ANSWER

SHOW YOUR WORK
14. Let $E=\left(\boldsymbol{e}_{1}, \boldsymbol{e}_{2}\right)$ be the standard ordered basis for \mathbb{R}^{2}. Let $\boldsymbol{b}_{1}=[2,-1], \boldsymbol{b}_{2}=[-3,2]$ and let $B=\left(\boldsymbol{b}_{1}, \boldsymbol{b}_{2}\right)$ be an ordered basis for \mathbb{R}^{2}.

Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear transformation defined by $T\left(\left[x_{1}, x_{2}\right]\right)=\left[x_{1}+x_{2},-x_{1}+x_{2}\right]$ for every $\left[x_{1}, x_{2}\right] \in \mathbb{R}^{2}$.
[2] (a) Write down the standard matrix representation of T.

ANSWER

ANSWER

ANSWER

