MATH 232 Key for Final Exam, August 6, 1998

[4] 1. (a) Describe carefully the kinds of row operation which are permitted in bringing a matrix to reduced row-echelon form.

ANSWER BOX

Let the matrix under consideration have m rows and entries from \mathbb{R}. The permissible row operations are

1. switch rows i and j
2. replace row i by row i plus c (row j), where $c \in \mathbb{R}-\{0\}$
3. replace row i by c (row i), where $c \in \mathbb{R}-\{0\}$.
[3] (b) Find a reduced row-echelon matrix row-equivalent to

$$
\left[\begin{array}{rrrr}
1 & 0 & 1 & 2 \\
0 & 1 & 0 & -1 \\
1 & 2 & 1 & 0 \\
2 & 4 & 2 & 0
\end{array}\right]
$$

ANSWER BOX

Applying the indicated row operations we have

$$
\begin{aligned}
{\left[\begin{array}{rrrr}
1 & 0 & 1 & 2 \\
0 & 1 & 0 & -1 \\
1 & 2 & 1 & 0 \\
2 & 4 & 2 & 0
\end{array}\right] } & \sim\left[\begin{array}{rrrr}
1 & 0 & 1 & 2 \\
0 & 1 & 0 & -1 \\
1 & 2 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] & & R_{4} \rightarrow R_{4}-R_{3} \\
& \sim\left[\begin{array}{rrrr}
1 & 0 & 1 & 2 \\
0 & 1 & 0 & -1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] & & R_{3} \rightarrow R_{3}-R_{1}, R_{3} \rightarrow R_{3}-2 R_{2}
\end{aligned}
$$

2. Let

$$
A=\left[\begin{array}{rrrrr}
0 & 0 & -3 & -4 & -5 \\
1 & -1 & -2 & -3 & -4 \\
0 & 0 & -1 & -2 & -3
\end{array}\right], \quad \boldsymbol{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right], \text { and } \boldsymbol{b}=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]
$$

[4] (a) Express the general solution of the homogeneous system $A \boldsymbol{x}=0$ as a linear combination of vectors in \mathbb{R}^{5}.
[3]
(b) Find a particular solution of the nonhomogeneous system $A \boldsymbol{x}=\boldsymbol{b}$.

The solution should be in terms of b_{1}, b_{2}, b_{3}, but contain no arbitrary constants.

ANSWER BOX

We convert the augmented matrix to reduced row-echelon form by means of row operations:

$$
\begin{aligned}
& {\left[\begin{array}{rrrrr|r}
1 & -1 & -2 & -3 & -4 & b_{2} \\
0 & 0 & -1 & -2 & -3 & b_{3} \\
0 & 0 & -3 & -4 & -5 & b_{1}
\end{array}\right] \sim\left[\begin{array}{rrrrr|c}
1 & -1 & -2 & -3 & -4 & b_{2} \\
0 & 0 & 1 & 2 & 3 & -b_{3} \\
0 & 0 & -3 & -4 & -5 & b_{1}
\end{array}\right] } \\
& \sim\left[\begin{array}{rrrrr|c}
1 & -1 & 0 & 1 & 2 & b_{2}-2 b_{3} \\
0 & 0 & 1 & 2 & 3 & -b_{3} \\
0 & 0 & 0 & 2 & 4 & b_{1}-3 b_{3}
\end{array}\right] \sim\left[\begin{array}{rrrrr|c}
1 & -1 & 0 & 0 & 0 & \left(b_{2}-2 b_{3}\right)-\frac{1}{2}\left(b_{1}-3 b_{3}\right) \\
0 & 0 & 1 & 0 & -1 & -b_{1}+2 b_{3} \\
0 & 0 & 0 & 1 & 2 & \frac{1}{2}\left(b_{1}-3 b_{3}\right)
\end{array}\right]
\end{aligned}
$$

From the reduced augmented matrix we can read off the required information.
(a) The general solution of the homogeneous system is

$$
\boldsymbol{x}=r_{1}\left[\begin{array}{l}
1 \\
1 \\
0 \\
0 \\
0
\end{array}\right]+r_{2}\left[\begin{array}{r}
0 \\
0 \\
1 \\
-2 \\
1
\end{array}\right] \quad\left(r_{1}, r_{2} \in \mathbb{R}\right) .
$$

(b) We get a particular solution by setting $x_{2}=x_{5}=0$

$$
x=\left[\frac{1}{2}\left(b_{1}+2 b_{2}-b_{3}\right), 0,-b_{1}+2 b_{3}, \frac{1}{2}\left(b_{1}-3 b_{3}\right), 0\right] .
$$

[4] 3. Let A denote the matrix

$$
\left[\begin{array}{lll}
1 & 1 & 1 \\
2 & 1 & 2 \\
1 & 2 & 3
\end{array}\right]
$$

Express A as a product of elementary matrices.

ANSWER BOX

By row operations we convert A to I :

$$
\begin{aligned}
A & \sim\left[\begin{array}{rrr}
1 & 1 & 1 \\
0 & -1 & 0 \\
0 & 1 & 2
\end{array}\right] & & R_{2} \rightarrow R_{2}-2 R_{1}, R_{3} \rightarrow R_{3}-R_{1} \\
& \sim\left[\begin{array}{rrr}
1 & 0 & 1 \\
0 & -1 & 0 \\
0 & 0 & 2
\end{array}\right] & & R_{1} \rightarrow R_{1}+R_{2}, R_{3} \rightarrow R_{3}+R_{2} \\
& \sim\left[\begin{array}{lrr}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] & & R_{2} \rightarrow(-1) R_{2}, R_{3} \rightarrow(1 / 2) R_{3} \\
& \sim\left[\begin{array}{lrl}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] & & R_{1} \rightarrow R_{1}-R_{3} .
\end{aligned}
$$

Now A is equal to the following product:

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
1 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & -1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -1 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 2
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

From left to right the terms of the product are the elementary matrices corresponding to the inverses of the seven row operations used to convert A to I.
4. Let $A \in \mathbb{R}^{5 \times 6}$ have columns $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{6}$ respectively. Let the reduced row-echelon form of A be

$$
H=\left[\begin{array}{rrrrrr}
1 & 0 & -2 & 0 & -3 & -4 \\
0 & 1 & -1 & 0 & -2 & -3 \\
0 & 0 & 0 & 1 & -1 & -2 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

[2] (a) Write down a basis for the row space of A.

ANSWER BOX

$$
\{[1,0,-2,0,-3,-4],[0,1,-1,0,-2,-3],[0,0,0,1,-1,-2]\}
$$

[2] (b) Write down a basis for the column space of A.

ANSWER BOX

Since the pivots of A fall in columns 1, 2, and 4, the corresponding columns of A form a basis for the column space of A

$$
\left\{\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \boldsymbol{a}_{4}\right\}
$$

[2] (c) Write down a basis for the nullspace of A.

ANSWER BOX

$$
\{[2,1,1,0,0,0],[3,2,0,1,1,0],[4,3,0,2,0,1]\}
$$

5. Let l be the line in \mathbb{R}^{2} whose equation is $y=2 x$. Let $P: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the function such that $P(\boldsymbol{a})$ is the projection of \boldsymbol{a} on l.

Let $R: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the function such that $R(\boldsymbol{a})$ is the reflection of \boldsymbol{a} in l.

[3] (a) Show that P is a linear transformation and find the matrix which is its standard representation.

ANSWER BOX

We need to find a formula for $P(\boldsymbol{a})$. One way of doing this is to observe that $P(\boldsymbol{a})$ has the form $[r, 2 r]$ and that $(P(\boldsymbol{a})-\boldsymbol{a}) \cdot[1,2]=0$. We easily deduce that

$$
P\left(\left[a_{1}, a_{2}\right]\right)=\left[\frac{a_{1}+2 a_{2}}{5}, \frac{2 a_{1}+4 a_{2}}{5}\right]=\frac{1}{5}\left[\begin{array}{ll}
1 & 2 \\
2 & 4
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right] .
$$

Since P is represented by a matrix, P preserves addition and scalar multiplication. Therefore P is a linear transformation.
[3] (b) Express R as a linear combination of P and I the identity transformation on \mathbb{R}^{2}.

Hence show that R is also a linear transformation.

ANSWER BOX

From the definition of reflection we see that $R(\boldsymbol{a})-P(\boldsymbol{a})=P(\boldsymbol{a})-\boldsymbol{a}$ for all $\boldsymbol{a} \in \mathbb{R}^{2}$. Therefore in the space of functions from \mathbb{R}^{2} into \mathbb{R}^{2} we have

$$
R=2 P-I .
$$

Both P and I are linear transformations. Therefore R, being a linear combination of linear transformations, is also a linear transformation.
[4] 6. (a) Let V be a vector space over \mathbb{R} and S be a subset of V.
State a criterion for S to be a subspace of V.

ANSWER BOX

S is a subspace if it satisfies three conditions:

1. $S \neq \emptyset$
2. $\boldsymbol{u}+\boldsymbol{v} \in S$ for all $\boldsymbol{u}, \boldsymbol{v} \in S$
3. $r \boldsymbol{u} \in S$ for all $r \in \mathbb{R}$ and all $\boldsymbol{u} \in S$.
[4] (b) Which of the following sets are subspaces of \mathbb{R}^{3} ?
4. $S=\{[x, y, z]: x \geq 0\}$
5. $S=\{[x, y, z]: x+3 y=z\}$
6. $S=\{[x, y, z]: x y=0\}$

Justify your answers briefly.

ANSWER BOX

1. S is not a subspace because $[1,0,0] \in S$ but $(-1)[1,0,0] \notin S$.
2. S is a subspace, the nullspace of $\left[\begin{array}{ll}13-1\end{array}\right]$.

In more detail, $S \neq \emptyset$ since $0 \in S$. Let $\boldsymbol{u}=\left[u_{1}, u_{2}, u_{3}\right], \boldsymbol{v}=\left[v_{1}, v_{2}, v_{3}\right]$ be in S. Then

$$
\left(u_{1}+v_{1}\right)+3\left(u_{2}+v_{2}\right)=\left(u_{1}+3 u_{2}\right)+\left(v_{1}+3 v_{2}\right)=u_{3}+v_{3} .
$$

Therefore $\boldsymbol{u}+\boldsymbol{v} \in S$. So S is closed under addition. Similarly, S is closed under scalar multiplication.
3. S is not a subspace because $[1,0,0],[0,1,0] \in S$ but $[1,0,0]+[0,1,0] \notin S$.
7. Let $V=\mathbb{R}^{2 \times 2}$ denote the vector space over \mathbb{R} whose vectors are the 2×2 matrices with entries from \mathbb{R}. Let

$$
\boldsymbol{v}_{1}=\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right], \boldsymbol{v}_{2}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \boldsymbol{v}_{3}=\left[\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right], \boldsymbol{v}_{4}=\left[\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right] .
$$

[4] (a) Show that $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}, \boldsymbol{v}_{4}\right\}$ is linearly independent in V.

ANSWER BOX

Suppose that $\boldsymbol{c}=\left[c_{1}, c_{2}, c_{3}, c_{4}\right] \in \mathbb{R}^{4}$ satisfies $c_{1} \boldsymbol{v}_{1}+c_{2} \boldsymbol{v}_{2}+c_{3} \boldsymbol{v}_{3}+c_{4} \boldsymbol{v}_{4}=\mathbf{0}$. Then

$$
\left[\begin{array}{cc}
c_{1}+c_{2}+c_{3} & c_{1}+c_{4} \\
c_{3}+c_{4} & c_{2}+c_{4}
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] .
$$

Therefore

$$
3 c_{1}=\left(c_{1}+c_{2}+c_{3}\right)+2\left(c_{1}+c_{4}\right)-\left(c_{3}+c_{4}\right)-\left(c_{2}+c_{4}\right)=0 .
$$

Hence $c_{1}=0$. Since $c_{1}+c_{4}=0, c_{4}=0$. Since $c_{3}+c_{4}=c_{2}+c_{4}=0$, it also follows that $c_{2}=c_{3}=0$. This is enough.
[3] (b) Find the coordinate vector of the matrix $\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$ with respect to the ordered basis $\mathcal{B}=\left\langle\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}, \boldsymbol{v}_{4}\right\rangle$.

ANSWER BOX

Let \boldsymbol{u} denote $\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$, and \boldsymbol{w} denote $\boldsymbol{u}+\boldsymbol{v}_{4}$ the vector we are interested in. Observe that

$$
3 \boldsymbol{u}=\left(\boldsymbol{v}_{1}+\boldsymbol{v}_{2}+\boldsymbol{v}_{3}\right)-\boldsymbol{v}_{4} .
$$

Therefore

$$
\boldsymbol{w}=\frac{1}{3}\left[\left(\boldsymbol{v}_{1}+\boldsymbol{v}_{2}+\boldsymbol{v}_{3}\right)-\boldsymbol{v}_{4}\right]+\boldsymbol{v}_{4}=\frac{1}{3} \boldsymbol{v}_{1}+\frac{1}{3} \boldsymbol{v}_{2}+\frac{1}{3} \boldsymbol{v}_{3}+\frac{2}{3} \boldsymbol{v}_{4} .
$$

Therefore $\boldsymbol{w}_{\mathcal{B}}=[1 / 3,1 / 3,1 / 3,2 / 3]$.
[4] 8. (a) Evaluate the determinant

$$
\left|\begin{array}{llll}
1 & 2 & 3 & 0 \\
0 & 0 & 1 & 0 \\
5 & 6 & 7 & 0 \\
0 & 0 & 0 & 8
\end{array}\right|
$$

ANSWER BOX

Expanding by the last row and then by the second row we get

$$
\left|\begin{array}{llll}
1 & 2 & 3 & 0 \\
0 & 0 & 1 & 0 \\
5 & 6 & 7 & 0 \\
0 & 0 & 0 & 8
\end{array}\right|=8\left|\begin{array}{lll}
1 & 2 & 3 \\
0 & 0 & 1 \\
5 & 6 & 7
\end{array}\right|=-8\left|\begin{array}{ll}
1 & 2 \\
5 & 6
\end{array}\right|=32 .
$$

[3] (b) Let A be an $n \times n$ matrix and $A_{i j}$ denote the i, j-th minor of A. State the formula which expands $\operatorname{det}(A)$ by the i-th row.

ANSWER BOX

$$
\operatorname{det}(A)=\sum_{j=1}^{n}(-1)^{i+j} a_{i j} \operatorname{det}\left(A_{i j}\right)
$$

9. Let A denote the matrix

$$
\left[\begin{array}{rrr}
3 & 1 & -1 \\
-1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right]
$$

[4] (a) Find the eigenvalues of A.
[4] (b) Discover whether A is diagonalizable and explain your answer carefully.

ANSWER BOX

(a) We find the characteristic polynomial simultaneously finding its factors:

$$
\begin{aligned}
|\lambda I-A| & =\left|\begin{array}{ccc}
\lambda-3 & -1 & 1 \\
1 & \lambda-1 & -1 \\
-1 & -1 & \lambda-1
\end{array}\right| \\
& =\left|\begin{array}{ccc}
\lambda-2 & -1 & 0 \\
2-\lambda & \lambda-1 & \lambda-2 \\
0 & -1 & \lambda-2
\end{array}\right| \quad C_{1} \rightarrow C_{1}-C_{2}, C_{3} \rightarrow C_{3}+C_{2} \\
& =(\lambda-2)^{2}\left|\begin{array}{ccc}
1 & -1 & 0 \\
-1 & \lambda-1 & 1 \\
0 & -1 & 1
\end{array}\right| \\
& =(\lambda-2)^{2}\left|\begin{array}{ccc}
1 & 0 & 0 \\
-1 & \lambda-1 & 1 \\
0 & 0 & 1
\end{array}\right| \quad C_{2} \rightarrow C_{2}+C_{1}, C_{2} \rightarrow C_{2}+C_{3} \\
& =(\lambda-2)^{2}(\lambda-1) .
\end{aligned}
$$

The eigenvalues are $\lambda=2$ (algebraic multiplicity 2), and $\lambda=1$.
(b) In the usual way we find the eigenspaces

$$
\begin{aligned}
& E_{1}=\operatorname{sp}([1,-1,1]) \\
& E_{2}=\operatorname{sp}([1,0,1],[0,1,1])
\end{aligned}
$$

Since there is a basis of \mathbb{R}^{3}, namely

$$
\begin{equation*}
\{[1,-1,1],[1,0,1],[0,1,1]\}, \tag{1}
\end{equation*}
$$

consisting of eigenvectors of A, A is diagonalizable. A diagonalizing matrix C is obtained by taking as columns the vectors in (1).
[3] 10. (a) Find a basis for the orthogonal complement in \mathbb{R}^{4} of the space $W=\operatorname{sp}([1,2,-1,1],[1,-1,1,1])$.
[4] $\quad(b)$ Let $\boldsymbol{b}=[0,3,3,3]$. Find the projection b_{W} of b on W.

ANSWER BOX

(a) We have

$$
W^{\perp}=\text { nullspace }\left(\left[\begin{array}{rrrr}
1 & 2 & -1 & 1 \\
1 & -1 & 1 & 1
\end{array}\right]\right)
$$

Since

$$
\left[\begin{array}{rrrr}
1 & 2 & -1 & 1 \\
1 & -1 & 1 & 1
\end{array}\right] \sim\left[\begin{array}{llll}
1 & 0 & \frac{1}{3} & 1 \\
0 & 1 & \frac{-2}{3} & 0
\end{array}\right],
$$

we see that $W^{\perp}=\operatorname{sp}([-1,2,3,0],[-1,0,0,1])$. By inspection the spanning vectors we have given for W^{\perp} are are linearly independent and hence a basis.
(b) Let $\boldsymbol{w}_{1}, \boldsymbol{w}_{2}$ be the basis vectors given for W. Let $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}$ be the basis vectors found for W^{\perp}. Let all these vectors be seen as column vectors. By row-reduction

$$
\left[\begin{array}{llll}
\boldsymbol{w}_{1} & \boldsymbol{w}_{2} & \boldsymbol{v}_{1} & \boldsymbol{v}_{2} \mid \boldsymbol{b}
\end{array}\right] \sim\left[\begin{array}{llll|l}
1 & & & & 1 \\
& 1 & & & 1 \\
& & 1 & & 1 \\
& & & 1 & 1
\end{array}\right] .
$$

Therefore $\boldsymbol{b}=\boldsymbol{w}_{1}+\boldsymbol{w}_{2}+\boldsymbol{v}_{1}+\boldsymbol{v}_{2}$. It follows that

$$
\boldsymbol{b}_{W}=\boldsymbol{w}_{1}+\boldsymbol{w}_{2}=[2,1,0,2] .
$$

Note. There are at least two other methods one might use here: (1) finding an orthogonal basis for W and then summing the projections of \boldsymbol{b} along the basis vectors, (2) using the projection matrix P for W.
11. Let $W=\operatorname{sp}([1,-1,-1,1],[2,2,1,1],[0,1,0,1])$.
[5] (a) Find an orthogonal basis for W.
[3] (b) Find an orthonormal basis for W.

ANSWER BOX

(a) Let the given basis vectors be denoted $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}$ respectively. By inspection, \boldsymbol{v}_{1} is orthogonal to both \boldsymbol{v}_{2} and \boldsymbol{v}_{3}. So it is sufficient to find an orthogonal basis for $\operatorname{sp}\left(\boldsymbol{v}_{2}, \boldsymbol{v}_{3}\right)$. By the Gram-Schmidt method such a basis is

$$
\boldsymbol{v}_{3}, \quad \boldsymbol{v}_{2}-\left(\frac{\boldsymbol{v}_{2} \cdot \boldsymbol{v}_{3}}{\boldsymbol{v}_{3} \cdot \boldsymbol{v}_{3}}\right) \boldsymbol{v}_{3} .
$$

Thus a suitable basis for W is

$$
\{[1,-1,-1,1],[0,1,0,1],[2,1 / 2,1,-1 / 2]\} .
$$

(b) We obtain an orthonormal basis by normalizing the basis above:

$$
\{(1 / 2)[1,-1,-1,1],(1 / \sqrt{2})[0,1,0,1],(1 / \sqrt{22})[4,1,2,-1]\} .
$$

12. Let $\boldsymbol{b}, \boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{k}$ be nonzero vectors in \mathbb{R}^{n} such that

$$
\boldsymbol{v}_{i} \cdot \boldsymbol{v}_{j}=0 \quad(1 \leq i<j \leq k)
$$

Let W denote $\operatorname{sp}\left(\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{k}\right)$.
Let A denote the $n \times k$ matrix $\left[\boldsymbol{v}_{1} \ldots \boldsymbol{v}_{k}\right]$ whose columns are $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{k}$.
[4] (a) Prove that the set $\left\{\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{k}\right\}$ is linearly independent.
[4] (b) Prove that

$$
\boldsymbol{b}_{W}=A\left(A^{T} A\right)^{-1} A^{T} \boldsymbol{b}
$$

What has to be shown here is that the vector \boldsymbol{b}_{W} defined by this formula satisfies $\boldsymbol{b}_{W} \in W$ and $\boldsymbol{b}-\boldsymbol{b}_{W} \perp W$.

ANSWER BOX

(a) Suppose that

$$
c_{1} \boldsymbol{v}_{1}+c_{2} \boldsymbol{v}_{2}+\ldots+c_{k} \boldsymbol{v}_{k}=\mathbf{0}
$$

Taking the dot product with \boldsymbol{v}_{i} we get

$$
c_{1}\left(\boldsymbol{v}_{1} \cdot \boldsymbol{v}_{i}\right)+c_{2}\left(\boldsymbol{v}_{2} \cdot \boldsymbol{v}_{i}\right)+\ldots+c_{k}\left(\boldsymbol{v}_{k} \cdot \boldsymbol{v}_{i}\right)=0 .
$$

Since $\boldsymbol{v}_{j} \cdot \boldsymbol{v}_{i}=0$ except when $j=i$, we get $c_{i}\left(\boldsymbol{v}_{i} \cdot \boldsymbol{v}_{i}\right)=0$. Since $\boldsymbol{v}_{i} \neq \mathbf{0}$, we have $\boldsymbol{v}_{i} \cdot \boldsymbol{v}_{i} \neq 0$. Hence $c_{i}=0$. But i was arbitrary. Thus $c_{i}=0$ for all $i, 1 \leq i \leq k$. This is enough.
(b) First note that, since \boldsymbol{b}_{W} has the form $A \boldsymbol{c}, \boldsymbol{b}_{W}$ is a linear combination of the columns of A. Therefore $\boldsymbol{b}_{W} \in W$.

Next, observe that

$$
\begin{aligned}
A^{T}\left(\boldsymbol{b}-\boldsymbol{b}_{W}\right) & =A^{T} \boldsymbol{b}-A^{T} \boldsymbol{b}_{W} \\
& =A^{T} \boldsymbol{b}-A^{T}\left(A\left(A^{T} A\right)^{-1} A^{T} \boldsymbol{b}\right) \\
& =A^{T} \boldsymbol{b}-\left(A^{T} A\right)\left(A^{T} A\right)^{-1}\left(A^{T} \boldsymbol{b}\right) \\
& =A^{T} \boldsymbol{b}-A^{T} \boldsymbol{b}=\mathbf{0}
\end{aligned}
$$

Therefore $\boldsymbol{b}-\boldsymbol{b}_{W}$ is orthogonal to every row of A^{T}. Hence $\boldsymbol{b}-\boldsymbol{b}_{W}$ is orthogonal to all of $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{k}$. So $\boldsymbol{b}-\boldsymbol{b}_{W} \perp W$.
13. Let V denote the vector space over \mathbb{R} consisting of all polynomials in $\mathbb{R}[x]$ of degree at most 2.
Let

$$
\mathcal{B}=\left\langle x+1,(x+1)^{2}, 1\right\rangle, \quad \mathcal{B}^{\prime}=\left\langle 2 x-1,2 x+1, x^{2}+x\right\rangle .
$$

Let $F: V \rightarrow V$ be the unique linear transformation such that $F(1)=1+x$, $F(x)=x+x^{2}, F\left(x^{2}\right)=1+x^{2}$
[4] (a) Find a matrix $C \in \mathbb{R}^{3 \times 3}$ such that, for all \boldsymbol{v} in V,

$$
C \boldsymbol{v}_{\mathcal{B}}=\boldsymbol{v}_{\mathcal{B}^{\prime}}
$$

[4] (b) Find the matrix $[F]_{\mathcal{B}^{\prime}, \mathcal{B}^{\prime}}$ which represents F with respect to $\mathcal{B}^{\prime}, \mathcal{B}^{\prime}$.

ANSWER BOX

(a) We need the following calculations:

$$
\begin{aligned}
& \boldsymbol{b}_{1}=x+1=-\frac{1}{4} \boldsymbol{b}_{1}^{\prime}+\frac{3}{4} \boldsymbol{b}_{2}^{\prime} \\
& \boldsymbol{b}_{2}=(x+1)^{2}=1+2 x+x^{2}=-\frac{1}{4} \boldsymbol{b}_{1}^{\prime}+\frac{3}{4} \boldsymbol{b}_{2}^{\prime}+\boldsymbol{b}_{3}^{\prime} \\
& \boldsymbol{b}_{3}=1=-\frac{1}{2} \boldsymbol{b}_{1}^{\prime}+\frac{1}{2} \boldsymbol{b}_{2}^{\prime}
\end{aligned}
$$

So the desired matrix C is $\left[\begin{array}{rrr}-\frac{1}{4} & -\frac{1}{4} & -\frac{1}{2} \\ \frac{3}{4} & \frac{3}{4} & \frac{1}{2} \\ 0 & 1 & 0\end{array}\right]$.
(b) Similarly, we have

$$
\begin{aligned}
& F\left(\boldsymbol{b}_{1}^{\prime}\right)=F(2 x-1)=-1+x+2 x^{2}=\frac{1}{4} \boldsymbol{b}_{1}^{\prime}-\frac{3}{4} \boldsymbol{b}_{2}^{\prime}+2 \boldsymbol{b}_{3}^{\prime} \\
& F\left(\boldsymbol{b}_{2}^{\prime}\right)=F(2 x+1)=1+3 x+2 x^{2}=-\frac{1}{4} \boldsymbol{b}_{1}^{\prime}+\frac{3}{4} \boldsymbol{b}_{2}^{\prime}+2 \boldsymbol{b}_{3}^{\prime} \\
& F\left(\boldsymbol{b}_{3}^{\prime}\right)=F\left(x^{2}+x\right)=1+x+2 x^{2}=-\frac{3}{4} \boldsymbol{b}_{1}^{\prime}+\frac{1}{4} \boldsymbol{b}_{2}^{\prime}+2 \boldsymbol{b}_{3}^{\prime}
\end{aligned}
$$

Therefore the matrix representing F with respect to \mathcal{B}^{\prime} is

$$
\left[\begin{array}{rrr}
\frac{1}{4} & -\frac{1}{4} & -\frac{3}{4} \\
-\frac{3}{4} & \frac{3}{4} & \frac{1}{4} \\
2 & 2 & 2
\end{array}\right] .
$$

[9] 14. Consider the surface S in \mathbb{R}^{3} whose equation is

$$
-x^{2}+y^{2}-z^{2}-2 y z-6 z x+2 x y=1
$$

Determine as well as you can the nature of the surface S.
Some questions that should be addressed are:
Does S have a centre? Is S connected? Are there axes?
Make it clear how you reach your conclusions.

ANSWER BOX

The symmetric matrix of coefficients of the quadratic form on the left of the equation is

$$
A=\left[\begin{array}{rrr}
-1 & 1 & -3 \\
1 & 1 & -1 \\
-3 & -1 & -1
\end{array}\right]
$$

The characteristic polynomial is

$$
\left|\begin{array}{rrr}
\lambda+1 & -1 & 3 \\
-1 & \lambda-1 & 1 \\
3 & 1 & \lambda+1
\end{array}\right|=\lambda(\lambda-3)(\lambda+4) .
$$

Because A is symmetric we know that there exists an orthogonal matrix C such that the substitution

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=C\left[\begin{array}{l}
\bar{x} \\
\bar{y} \\
\bar{z}
\end{array}\right]
$$

converts the given equation to

$$
3 \bar{x}^{2}-4 \bar{y}^{2}=1
$$

This is a hyperbolic cylinder; it has two components. There is no unique centre, but the centre of the hyperbola in each plane parallel to the $\bar{x} \bar{y}$-plane is a point of reflection for the surface. Similarly, for the axes: we get two in each plane parallel to the $\overline{x y}$-plane. The \bar{z}-axis is also an axis of the surface, the only one in its parallellism class.

