MATH 232 Key for sample final exam, August 1998

[4] 1. (a) Define the term "reduced row-echelon matrix".

ANSWER BOX

A matrix is reduced row-echelon if the following conditions are satisfied

1. every zero row lies below every nonzero row
2. all pivots are equal to 1
3. each pivot lies to the left of all pivots of rows below it
4. every other entry in the column of a pivot is equal to 0 .
[3] (b) Find a reduced row-echelon matrix row-equivalent to

$$
\left[\begin{array}{rrr}
2 & -3 & -1 \\
-1 & 2 & 2 \\
4 & -4 & 4
\end{array}\right]
$$

ANSWER BOX

Applying the row operations $R_{4} \rightarrow R_{4}-2 R_{1}, R_{1} \rightarrow R_{1}+2 R_{1}$, we get

$$
\left[\begin{array}{rrr}
0 & 1 & 3 \\
-1 & 2 & 2 \\
0 & 2 & 6
\end{array}\right] .
$$

Applying the row operations $R_{3} \rightarrow R_{3}-2 R_{1}, R_{2} \rightarrow R_{2}-2 R_{1}$, we get

$$
\left[\begin{array}{rrr}
0 & 1 & 3 \\
-1 & 0 & -4 \\
0 & 0 & 0
\end{array}\right]
$$

Finally, applying $R_{1} \leftrightarrow R_{2}, R_{1} \rightarrow(-1) R_{1}$, we get

$$
\left[\begin{array}{lll}
1 & 0 & 4 \\
0 & 1 & 3 \\
0 & 0 & 0
\end{array}\right]
$$

2. Let

$$
A=\left[\begin{array}{rrrrr}
2 & -1 & 1 & 3 & 1 \\
0 & 1 & 3 & -2 & 0 \\
0 & 0 & 0 & 1 & 1
\end{array}\right], \quad \boldsymbol{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right], \text { and } \boldsymbol{b}=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]
$$

[4] (a) Express the general solution of the homogeneous system $A \boldsymbol{x}=\mathbf{0}$ as a linear combination of vectors in \mathbb{R}^{5}.

ANSWER BOX

By performing on $[A \mid \boldsymbol{b}]$ the row operations $R_{1} \rightarrow R_{1}+R_{2}, R_{2} \rightarrow R_{2}+2 R_{3}, R_{1} \rightarrow$ $R_{1}-R_{3}$, and $R_{1} \rightarrow(1 / 2) R_{1}$ we get

$$
[H \mid \boldsymbol{c}]=\left[\begin{array}{lllll|l}
1 & 0 & 2 & 0 & 0 & 0 \\
0 & 1 & 3 & 0 & 2 & 2 \\
0 & 0 & 0 & 1 & 1 & 1
\end{array}\right]
$$

From this we see that the general solution of the homogeneous system is

$$
\boldsymbol{x}=r_{1}[-2,-3,1,0,0]+r_{2}[0,-2,0,-1,1] \quad\left(r_{1}, r_{2} \in \mathbb{R}\right) .
$$

[3] (b) Write down the general solution of the nonhomogeneous system $A \boldsymbol{x}=\boldsymbol{b}$.

ANSWER BOX

From the reduced augmented matrix, we see that

$$
\boldsymbol{x}=[0,2,0,1,0]+r_{1}[-2,-3,1,0,0]+r_{2}[0,-2,0,-1,1] \quad\left(r_{1}, r_{2} \in \mathbb{R}\right) .
$$

3. The matrix A in $\mathbb{R}^{n \times n}$ is defined to be invertible if there exists B in $\mathbb{R}^{n \times n}$ such that

$$
A B=B A=I .
$$

Let $A, C \in \mathbb{R}^{n \times n}$ both be invertible.
[3] (a) Show that $A C$ is invertible.

ANSWER BOX

Since A and C are invertible there exist $B, D \in \mathbb{R}^{n \times n}$ such that

$$
A B=B A=I \text { and } C D=D C=I .
$$

Using the associativity of matrix multiplication, we have

$$
\begin{aligned}
& (A C)(D B)=A(C D) B=A I B=A B=I \\
& (D B)(A C)=D(B A) C=D I C=D C=I .
\end{aligned}
$$

Thus $D B$ witnesses that $A C$ is invertible.
[3] (b) Show that A^{T} is invertible.

ANSWER BOX

Let B witness that A is invertible, i.e.,

$$
A B=B A=I .
$$

Taking the transpose of each term we have

$$
B^{T} A^{T}=A^{T} B^{T}=I .
$$

Therefore B^{T} witnesses that A^{T} is invertible.
[3] 4. (a) Explain how to compute the rank of a matrix.

ANSWER BOX

By performing row operations on the given matrix A find a reduced row-echelon matrix H row-equivalent to A. The rank of A is the number of nonzero rows of H.
[4] (b) Explain why it is true that

$$
\operatorname{rank}(A B) \leq \min (\operatorname{rank}(A), \operatorname{rank}(B))
$$

for all matrices A, B such that $A B$ is defined.

ANSWER BOX

The crux of the matter is that the columns of $A B$ are linear combinations of the columns of A - indeed, if $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{n}$ are the columns of A and $\left[b_{1 j}, \ldots, b_{n j}\right]$ is the j-th column of B, then the j-th column of $A B$ is $b_{1 j} \boldsymbol{a}_{1}+\ldots+b_{n j} \boldsymbol{a}_{n}$. Therefore colspace $(A B) \subseteq$ colspace(A) and so

$$
\operatorname{rank}(A B)=\operatorname{dim}(\operatorname{colspace}(A B)) \leq \operatorname{dim}(\operatorname{colspace}(A))=\operatorname{rank}(A)
$$

Applying this result to the product $B^{T} A^{T}$ we obtain

$$
\operatorname{rank}(A B)=\operatorname{rank}\left((A B)^{T}\right)=\operatorname{rank}\left(B^{T} A^{T}\right) \leq \operatorname{rank}\left(B^{T}\right)=\operatorname{rank}(B)
$$

This is enough.
[6] 5. Find a formula which defines a linear transformation $F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ which satisfies

$$
F([1,1,1])=[0,1,1], \quad F([1,-1,-1])=[1,0,0] .
$$

ANSWER BOX

The requirement above specifies F on a subspace W of dimension 2. To complete the specification of F on \mathbb{R}^{3} we require that $F([0,1,0])=[0,0,0]$. Since F is linear,

$$
\begin{aligned}
& F([1,0,0])=F((1 / 2)[[1,1,1]+(1 / 2)[[1,-1,-1])=(1 / 2)([0,1,1]+[1,0,0]) \\
& F([0,0,1])=F([1,1,1]-[1,0,0]-[0,1,0])=[0,1,1]-\left[\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right]-[0,0,0] .
\end{aligned}
$$

Thus the standard matrix representation of F is

$$
\left[F\left(e_{1}\right) F\left(e_{2}\right) F\left(e_{3}\right)\right]=\left[\begin{array}{rrr}
\frac{1}{2} & 0 & -\frac{1}{2} \\
\frac{1}{2} & 0 & \frac{1}{2} \\
\frac{1}{2} & 0 & \frac{1}{2}
\end{array}\right]
$$

Therefore a formula defining F is

$$
F([x, y, z])=(1 / 2)[x-z, x+z, x+z] .
$$

Definition of vector space

A vector space over \mathbb{R} is a set V of vectors together with a distinguished vector $\mathbf{0}$ in V and three functions

$$
(\boldsymbol{u}, \boldsymbol{v}) \mapsto \boldsymbol{u}+\boldsymbol{v}, \quad \boldsymbol{v} \mapsto-\boldsymbol{v}, \quad(r, \boldsymbol{v}) \mapsto r \boldsymbol{v} \quad(\boldsymbol{u}, \boldsymbol{v} \in V, r \in \mathbb{R})
$$

which satisfy

$$
\begin{array}{ll}
\text { A1 }(\boldsymbol{u}+\boldsymbol{v})+\boldsymbol{w}=\boldsymbol{u}+(\boldsymbol{v}+\boldsymbol{w}) & \text { associative law } \\
\text { A2 } \boldsymbol{u}+\boldsymbol{v}=\boldsymbol{v}+\boldsymbol{u} & \text { commutative law } \\
\text { A3 } \mathbf{0}+\boldsymbol{u}=\boldsymbol{u} & \text { additive identity } \\
\text { A4 } \boldsymbol{u}+(-\boldsymbol{u})=\mathbf{0} & \text { additive inverse } \\
\text { S1 } r(\boldsymbol{u}+\boldsymbol{v})=r \boldsymbol{u}+r \boldsymbol{v} & \text { distributivity } \\
\text { S2 }(r+s) \boldsymbol{u}=r \boldsymbol{u}+s \boldsymbol{u} & \text { distributivity } \\
\text { S3 } r(s \boldsymbol{u})=(r s) \boldsymbol{u} & \text { associative law } \\
\text { S4 } 1 \boldsymbol{u}=\boldsymbol{u} & \text { scale preservation }
\end{array}
$$

for all $\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w} \in V$ and $r, s \in \mathbb{R}$.
[6] 6. From the axioms for a vector space show that for all vectors $\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}$ in V,

$$
\boldsymbol{u}+\boldsymbol{v}=\boldsymbol{u}+\boldsymbol{w} \Rightarrow \boldsymbol{v}=\boldsymbol{w}
$$

ANSWER BOX

Suppose that $\boldsymbol{u}+\boldsymbol{v}=\boldsymbol{u}+\boldsymbol{w}$. Then

$$
\begin{aligned}
\boldsymbol{v} & =\mathbf{0}+\boldsymbol{v} & & \text { by A3 } \\
& =(\boldsymbol{u}+(-\boldsymbol{u}))+\boldsymbol{v} & & \text { by A4 } \\
& =(\boldsymbol{u}+\boldsymbol{v})+(-\boldsymbol{u}) & & \text { by A1, A2 } \\
& =(\boldsymbol{u}+\boldsymbol{w})+(-\boldsymbol{u}) & & \text { hypothesis } \\
& =(\boldsymbol{u}+(-\boldsymbol{u}))+\boldsymbol{w} & & \text { by A1, A2 } \\
& =\mathbf{0}+\boldsymbol{w} & & \text { by A4 } \\
& =\boldsymbol{w} & & \text { A3. }
\end{aligned}
$$

This is enough.
7. Let $V=\mathbb{R}^{2 \times 2}$ denote the vector space over \mathbb{R} whose vectors are the 2×2 matrices with entries from \mathbb{R}. Let

$$
\boldsymbol{v}_{1}=\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right], \boldsymbol{v}_{2}=\left[\begin{array}{ll}
0 & 0 \\
1 & 1
\end{array}\right], \boldsymbol{v}_{3}=\left[\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right], \boldsymbol{v}_{4}=\left[\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right] .
$$

[3] (a) Show that $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}, \boldsymbol{v}_{4}\right\}$ is linearly dependent.

ANSWER BOX

By inspection,

$$
\boldsymbol{v}_{1}+\boldsymbol{v}_{2}=\boldsymbol{v}_{3}+\boldsymbol{v}_{4}
$$

[3] (b) Find $\boldsymbol{u} \in V$ such that $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}, \boldsymbol{u}\right\}$ is a basis for V.

ANSWER BOX

We can take $\boldsymbol{u}=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$. Then $\boldsymbol{u}, \boldsymbol{v}_{1}-\boldsymbol{u}, \boldsymbol{v}_{3}-\boldsymbol{u}, \boldsymbol{v}_{2}-\boldsymbol{v}_{3}+\boldsymbol{u}$ are the four 2×2 matrices with one entry equal to 1 and all the other entries equal to 0 .
Thus $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}, \boldsymbol{u}\right\}$ is a basis for V.
[4] 8. (a) Evaluate the determinant
$\left|\begin{array}{rrrrr}1 & 0 & 2 & 0 & 3 \\ 0 & 4 & 0 & 5 & 0 \\ 6 & 0 & 7 & 0 & 8 \\ 0 & 9 & 0 & 10 & 0 \\ 11 & 0 & 12 & 0 & 13\end{array}\right|$

ANSWER BOX

Performing the row operations $R_{5} \rightarrow R_{5}-R_{3}$ and $R_{3} \rightarrow R_{3}-R_{1}$ yields a matrix in which rows 3 and 5 are the same. These row operations do not change the value of the determinant.
So the given determinant is 0 .
[3] (b) Let A be a square matrix.
State the relationship between $\operatorname{det}(A)$ and $\operatorname{rank}(A)$.

ANSWER BOX

Let A be in $\mathbb{R}^{n \times n}$. Then

$$
\operatorname{det}(A) \neq 0 \Longleftrightarrow \operatorname{rank}(A)=n .
$$

9. Let A denote the matrix

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 \\
1 & 1 & 1 & 1
\end{array}\right]
$$

[4] (a) Find the eigenvalues of A.

ANSWER BOX

The characteristic polynomial is

$$
\begin{aligned}
& \left|\begin{array}{rrrr}
\lambda-1 & \lambda & 0 & -1 \\
0 & \lambda-1 & 0 & -1 \\
-1 & 0 & \lambda & -1 \\
-1 & -1 & -1 & \lambda-1
\end{array}\right|=\left|\begin{array}{rrrr}
\lambda & \lambda & -\lambda & 0 \\
0 & \lambda-1 & 0 & -1 \\
-1 & 0 & \lambda & -1 \\
-1 & -1 & -1 & \lambda-1
\end{array}\right|=\lambda\left|\begin{array}{rrrr}
1 & 0 & -1 & 0 \\
0 & \lambda-1 & 0 & 0 \\
-1 & 0 & \lambda & -1 \\
-1 & -1 & -1 & \lambda-1
\end{array}\right|= \\
& \lambda\left|\begin{array}{rrrr}
1 & \lambda & -1 & 0 \\
0 & \lambda-1 & 0 & -1 \\
0 & 0 & \lambda-1 & -1 \\
0 & -1 & -2 & \lambda-1
\end{array}\right|=\lambda\left|\begin{array}{rrr}
\lambda-1 & 0 & -1 \\
0 & \lambda-1 & -1 \\
-1 & -2 & \lambda-1
\end{array}\right|=\lambda\left|\begin{array}{rrr}
\lambda-1 & -2(\lambda-1) & -1 \\
0 & -2 & \lambda-1 \\
-1 & \lambda-1 \\
0 & \lambda-1
\end{array}\right|= \\
& \lambda(\lambda-1)\left|\begin{array}{rrr}
\lambda-1 & -2 & -1 \\
0 & 1 & -1 \\
-1 & 0 & \lambda-1
\end{array}\right|=\lambda(\lambda-1)\left|\begin{array}{rrr}
\lambda-1 & 0 & -3 \\
0 & 1 & -1 \\
-1 & 0 & \lambda-1
\end{array}\right|=\lambda(\lambda-1)\left((\lambda-1)^{2}-3\right)
\end{aligned}
$$

Therefore the eigenvalues are $\lambda=0,1,1 \pm \sqrt{3}$.
[4] (b) Find a matrix C such that $C^{-1} A C$ is a diagonal.

ANSWER BOX

By inspection eigenvectors belonging to 0,1 are $[1,1,-1,-1],[1,-2,1,0]$ respectively. We compute an eigenvector belonging to $1+\sqrt{3}$ by nullspace $((1+\sqrt{3}) I-A)=$ nullspace $\left(\left[\begin{array}{rrrr}\sqrt{3} & 0 & 0 & -1 \\ 0 & \sqrt{3} & 0 & -1 \\ -1 & 0 & 1+\sqrt{3} & -1 \\ -1 & -1 & -1 & \sqrt{3}\end{array}\right]\right)=\mathbf{s p}([1,1,1, \sqrt{3}])$.

Hence $[1,1,1, \sqrt{3}]$ is an eigenvector belonging to $1+\sqrt{3}$, and similarly $[1,1,1,-\sqrt{3}]$ is an eigenvector belonging to $1-\sqrt{3}$. Therefore we may take

$$
C=\left[\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & -2 & 1 & 1 \\
-1 & 1 & 1 & 1 \\
-1 & 0 & \sqrt{3} & -\sqrt{3}
\end{array}\right]
$$

[3] 10. (a) Find the projection of $[2,-1,3]$ on $\operatorname{sp}([1,2,-1])$.

ANSWER BOX

$$
\boldsymbol{p}=\left(\frac{[2,-1,3] \cdot[1,2,-1]}{[1,2,-1] \cdot[1,2,-1]}\right)[1,2,-1]=(-3 / 6)[1,2,-1]=\frac{1}{2}[1,2,-1] .
$$

[4] (b) Find a formula for the projection of $\boldsymbol{b}=\left[b_{1}, b_{2}, b_{3}\right]$ on the subspace $\operatorname{sp}([1,1,-1],[-1,1,1])$.

ANSWER BOX

Let A denote the matrix $\left[\begin{array}{rrr}1 & 1 & -1 \\ -1 & 1 & 1\end{array}\right]^{T}$. The projection matrix for the subspace $W=\operatorname{sp}([1,1,-1],[-1,1,1])$ is

$$
\begin{aligned}
P & =A\left(A^{T} A\right)^{-1} A^{T}=A\left[\begin{array}{rr}
3 & -1 \\
-1 & 3
\end{array}\right]^{-1} A^{T}=A\left(\frac{1}{8}\right)\left[\begin{array}{ll}
3 & 1 \\
1 & 3
\end{array}\right] A^{T} \\
& =\left(\frac{1}{8}\right) A\left[\begin{array}{rrr}
2 & 4 & -2 \\
-2 & 4 & 2
\end{array}\right]=\left(\frac{1}{8}\right)\left[\begin{array}{rrr}
4 & 0 & -4 \\
0 & 8 & 0 \\
-4 & 0 & 4
\end{array}\right] .
\end{aligned}
$$

So the projection of \boldsymbol{b} on W is $P \boldsymbol{b}=\left[\frac{b_{1}-b_{3}}{2}, b_{2}, \frac{b_{3}-b_{1}}{2}\right]$.
[3] 11. (a) State three conditions on a matrix $A \in \mathbb{R}^{n \times n}$ which are equivalent to A being an orthogonal matrix.

ANSWER BOX

Any three of the following five conditions are acceptable:

1. The columns of A form an orthonormal basis of \mathbb{R}^{n}.
2. The rows of A form an orthonormal basis of \mathbb{R}^{n}.
3. $A^{T} A=I$.
4. $\|A \boldsymbol{x}\|=\|\boldsymbol{x}\|$ for all $\boldsymbol{x} \in \mathbb{R}^{n}$.
5. $(A \boldsymbol{x}) \cdot(A \boldsymbol{y})=\boldsymbol{x} \cdot \boldsymbol{y}$ for all $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^{n}$.
[3] (b) Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be an orthogonal linear transformation such that

$$
T([1,0])=[1 / 2, \sqrt{3} / 2] .
$$

Explain why there are only two possibilities for T and describe them.

ANSWER BOX

The standard matrix representation of T is an orthogonal matrix and has columns $T([1,0])$ and $T([0,1])$.
From condition 1 we see that $T([1,0])$ and $T([0,1])$ form an orthonormal basis of \mathbb{R}^{2}. Since $T([1,0])=[1 / 2, \sqrt{3} / 2]$, we see that, if $T([0,1])=\left[a_{1}, a_{2}\right]$, then $a_{1}{ }^{2}+a_{2}{ }^{2}=1$ and $(1 / 2) a_{1}+(\sqrt{3} / 2) a_{2}=0$.
Therefore $T([0,1])$ is either $[\sqrt{3} / 2,-1 / 2]$ or $[-\sqrt{3} / 2,1 / 2]$.
[8] 12. The following data points are given:

$$
(-2,-8),(-1,-8),(2,0),(3,0),(4,2),(6,8)
$$

By using a method from linear algebra find the least-squares linear fit for these data points.

Your answer should make it clear what method you are using.

ANSWER BOX

$$
\text { Let } \begin{aligned}
& \left.A=\left[\begin{array}{rrrrrr}
1 & 1 & 1 & 1 & 1 & 1 \\
-2 & -1 & 2 & 3 & 4 & 6
\end{array}\right]^{T} \text { and } \boldsymbol{b}=\left[\begin{array}{lllll}
-8 & -8 & 0 & 0 & 2
\end{array}\right) 8\right]^{T} . \text { Then } \\
& \left(A^{T} A\right)^{-1} A^{T}
\end{aligned}=\left[\begin{array}{rr}
6 & 12 \\
12 & 70
\end{array}\right]^{-1}=\frac{1}{276}\left[\begin{array}{rrr}
70 & -12 \\
-12 & 6
\end{array}\right] A^{T} .
$$

According to the theory, the coefficients of the least-squares linear fit are given by

$$
\left[\begin{array}{l}
r_{0} \\
r_{1}
\end{array}\right]=\left(A^{T} A\right)^{-1} A^{T} \boldsymbol{b}=\left[\begin{array}{r}
1380 / 276 \\
552 / 276
\end{array}\right]=\left[\begin{array}{l}
5 \\
2
\end{array}\right] .
$$

So the least-squares linear fit is $y=5+2 x$.
13. Let $\mathbb{R}^{\mathbb{R}}$ denote the vector space over \mathbb{R} consisting of all functions $f: \mathbb{R} \rightarrow \mathbb{R}$. Let V denote the subspace of $\mathbb{R}^{\mathbb{R}}$. spanned by $\{1, \sin 2 x, \cos 2 x\}$. Let

$$
\mathcal{B}=\langle 1, \sin 2 x, \cos 2 x\rangle, \quad \mathcal{B}^{\prime}=\left\langle\sin ^{2} x, \cos ^{2} x, \sin x \cos x\right\rangle
$$

Let $F: V \rightarrow V$ be the unique linear transformation which maps \mathcal{B} to \mathcal{B}^{\prime} in the sense that $F(1)=\sin ^{2} x, F(\sin 2 x)=\cos ^{2} x$, and $F(\cos 2 x)=\sin x \cos x$.
(a) Find a matrix $C \in \mathbb{R}^{3 \times 3}$ such that, for all \boldsymbol{v} in V,

$$
C \boldsymbol{v}_{\mathcal{B}}=\boldsymbol{v}_{\mathcal{B}^{\prime}}
$$

ANSWER BOX

Note that

$$
\begin{aligned}
1 & =\sin ^{2} x+\cos ^{2} x \\
\sin 2 x & =2 \sin x \cos x \\
\cos 2 x & =-\sin ^{2} x+\cos ^{2} x .
\end{aligned}
$$

Thus the required matrix C is

$$
C_{\mathcal{B}, \mathcal{B}^{\prime}}=\left[\begin{array}{rrr}
1 & 0 & -1 \\
1 & 0 & 1 \\
0 & 2 & 0
\end{array}\right]
$$

[4] (b) Find the matrix $[F]_{\mathcal{B}, \mathcal{B}}$ which represents F with respect to \mathcal{B}, \mathcal{B}.

ANSWER BOX

Notice that the matrix of F with respect to $\mathcal{B}, \mathcal{B}^{\prime}$ is I the 3×3 identity matrix. Therefore the matrix of F with respect to \mathcal{B}, \mathcal{B} is

$$
\begin{aligned}
{[F]_{\mathcal{B}, \mathcal{B}} } & =C_{\mathcal{B}^{\prime}, \mathcal{B}}[F]_{\mathcal{B}, \mathcal{B}^{\prime}}=\left(C_{\mathcal{B}, \mathcal{B}^{\prime}}\right)^{-1} \\
& =-\frac{1}{4}\left[\begin{array}{rrr}
-2 & -2 & 0 \\
0 & 0 & -2 \\
2 & -2 & 0
\end{array}\right]
\end{aligned}
$$

[5] 14. Consider the curve in \mathbb{R}^{2} whose equation is

$$
6 x^{2}+\sqrt{24} x y+7 y^{2}=1 .
$$

Show that this curve is an ellipse and find the length of its major and minor axes.

ANSWER BOX

The symmetric matrix of coefficients of the quadratic form $6 x^{2}+\sqrt{24} x y+7 y^{2}$ is

$$
A=\left[\begin{array}{rr}
6 & \sqrt{6} \\
\sqrt{6} & 7
\end{array}\right] .
$$

The characteristic polynomial is $(\lambda-9)(\lambda-4)$. Letting C be the orthogonal diagonalizing matrix, the change of variables $\left[\begin{array}{l}x \\ y\end{array}\right]=C\left[\begin{array}{l}\bar{x} \\ \bar{y}\end{array}\right]$ converts the equation to

$$
9 \bar{x}^{2}+4 \bar{y}^{2}=1 .
$$

This is clearly the equation of an ellipse. The major axis has length 1 , while the minor axis has length $2 / 3$.
[6] 15. Consider the surface S in \mathbb{R}^{3} whose equation is

$$
x^{2}+y^{2}+z^{2}+2 x y+2 y z+2 z x-3 x+z=1 .
$$

Show that S is cylindrical in the sense that there is a unit vector \boldsymbol{u} such that S is invariant under translation by any scalar multiple of \boldsymbol{u}.

ANSWER BOX

Here the symmetric matrix of coefficients has eigenvalues 3,0 , where 0 has multiplicity 2. So the associated orthogonal transformation converts the equation to the form

$$
3 \bar{x}^{2}-\frac{2}{\sqrt{3}} \bar{x}+a \bar{y}+b \bar{z}=1 .
$$

The exact values of a and b do not matter except that one of them is nonzero. Making a rotation about the \bar{x}-axis we can convert the equation to the form

$$
3 \bar{x}^{2}-\frac{2}{\sqrt{3}} \bar{x}+c \bar{y}=1 .
$$

This is enough. The unit vector \boldsymbol{u} is the one in the direction of the z-axis.

