
MATH 232

Final Exam

December 15, 1999

ANSWER KEY

Questions 1, 4, 5, 7, 8b, 10 and 12 are identical in both versions of the exam.

For the remaining questions, the text of the question from the green booklet is printed,

then the solution for the green booklet is given and then a synopsis of the solution for the

pink booklet follows immediately.

1.

Question:

(a) Give a precise description of the kinds of row operation which are permitted in bringing a matrix
to reduced row-echelon form.

(b) De�ne an elementary matrix.

Marking:

(a) - 4 marks
(b) - 2 marks

6 marks total

Solution:

(a) These operations are called the elementary row operations. They are:
- Interchange two rows in the matrix.

- Multiply a row in the matrix by a non-zero constant.
- Replace a row in the matrix with the sum of itself and a multiple of a di�erent row in the matrix.
(See page 56.)

(b) Any matrix that can be obtained from an identity matrix by means of one elementary row operation
is called an elementary matrix.

(De�nition 1.14, page 65)

2.

Question:

Find a basis for the set of solutions to the system

2x1 � x2 � 6x3 + 10x4 = 0

�x1 + 3x2 + 8x3 � 15x4 = 0 :
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Marking:

6 marks

Solution: (See Section 1.6 in the book.)

green papers

This is a homogeneous linear system and therefore we do not need to work with the augmented

matrix. By Gauss reduction we �nd the reduced row-echelon form of the coe�cient matrix:�
2 �1 �6 10

�1 3 8 �15

�
�
�

1 0 �2 3

0 1 2 �4

�

Hence the general solution to the given system is2
664

2x3 � 3x4
�2x3 + 4x4

x3
x4

3
775

and a basis for the space of solutions is8>><
>>:

2
664

2

�2

1

0

3
775 ;

2
664
�3

4

0

1

3
775

9>>=
>>;

:

pink papers

The Gauss reduction of the coe�cient matrix is�
2 �1 3 �10

�1 3 1 15

�
�
�

1 0 2 �3

0 1 1 4

�

and a basis for the space of solutions is8>><
>>:

2
664
�2

�1

1

0

3
775 ;

2
664

3

�4

0

1

3
775

9>>=
>>;

:

3.

Question:

Let V = sp(a1;a2;a3;a4;a5) denote the subspace of R5 spanned by

a1 = [2; 2; 1;�1; 0]

a2 = [�1; 1; 1; 2; 2]

a3 = [7; 1;�1;�8;�6]

a4 = [0; 8; 6; 6; 8]

a5 = [1; 1; 1;�1;�3]
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and A =
�
a1 a2 a3 a4 a5

�
be the 5� 5 matrix whose columns are a1; a2; a3; a4; a5.

By elementary row operations A is converted to

H =

2
66664

1 0 2 2 0

0 1 �3 4 0

0 0 0 0 1

0 0 0 0 0

0 0 0 0 0

3
77775 :

(a) Write down a basis for V .

(b) Write down a basis for the row space of A.

(c) Determine the rank of A. Give a reason for your answer.

Marking:

(a) - 2 marks
(b) - 2 marks
(c) - 2 marks

6 marks total

Solution:

We notice that H is the reduced row-echelon form of A, and that V is the column space of A.

green papers

(a) For a basis for V we use the columns of A corresponding to the columns of H containing pivots.

Thus

fa1; a2; a5g = f[2; 2; 1;�1; 0]; [�1; 1; 1; 2; 2]; [1; 1; 1;�1;�3]g

is a basis for V . (See page 138.)
(b) For a basis of the row space of A we use the nonzero rows of H:

f[1; 0; 2; 2; 0]; [0; 1;�3; 4; 0]; [0; 0; 0; 0; 1]g

(c) By Theorem 2.4 (page 137) the rank of A is the dimension of the row space of A, which at the

same time is the dimension of the column space of A. Using the results of parts (a) and (b) we get

rank(A) = 3.

pink papers

(a) For a basis for V we use the columns of A corresponding to the columns of H containing pivots.
Thus

fa1; a2; a5g = f[2; 3; 1;�1; 0]; [�1; 1; 1; 2; 2]; [1;�1; 1;�1;�3]g

is a basis for V . (See page 138.)

(b) For a basis of the row space of A we use the nonzero rows of H:

f[1; 0; 2; 2; 0]; [0; 1;�3; 4; 0]; [0; 0; 0; 0; 1]g
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(c) By Theorem 2.4 (page 137) the rank of A is the dimension of the row space of A, which at the

same time is the dimension of the column space of A. Using the results of parts (a) and (b) we get

rank(A) = 3.

4.

Question:

On a separate sheet circulated with this exam you �nd the de�nition of a vector space over R.

Let V be a vector space over R. From the axioms listed in the de�nition, prove that, for any two

vectors v and w in V there exists a unique vector x in V such that v + x = w.

Marking:

7 marks

Solution: (See Section 3.1 in the book.)
Assume v + x = w. By the de�nition of the vector space we get

v + x = w

�v + (v + x) = �v +w

(�v + v) + x = �v +w (by A1)
(v + (�v)) + x = �v +w (by A2)

0+ x = �v +w (by A4)
x = �v +w (by A3).

Because the vector addition and the additive inverse are (uniquely de�ned) functions, the vector
�v +w is unique. This completes the proof.

5.

Question:

Let V be a vector space over R. LetW1 and W2 be two subspaces of V . Prove that their intersection
W1 \W2 is a subspace of V .

Marking:

5 marks

Solution:

Using Theorem 3.2 on page 193 it is su�cient to prove that W1 \W2 is:
(i) nonempty,

(ii) closed under vector addition, and

(iii) closed under scalar multiplication.

(i) Let 0 be the zero vector of V . Since W1 and W2 are subspaces of V , we have 0 2 W1, 0 2 W2

and so 0 2 W1 \W2. Thus W1 \W2 is nonempty.
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(ii) Let v1 and v2 be arbitrary vectors in W1 \ W2. Then v1 2 W1, v2 2 W1 and v1 2 W2,

v2 2 W2. Since W1 and W2 are subspaces of V , we have v1 + v2 2 W1 and v1 + v2 2 W2. Thus

v1 + v2 2 W1 \W2 and W1 \W2 is closed under vector addition.

(iii) Let c 2 R be an arbitrary scalar and let v be an arbitrary vector in W1 \W2. Then v 2 W1 and

v 2 W2. Since W1 and W2 are subspaces of V , we have cv 2 W1 and cv 2 W2. Thus cv 2 W1\W2

and W1 \W2 is closed under scalar multiplication.

6.

Question:

Let R2�2 denote the vector space of all 2 � 2 real matrices, using as vector addition and scalar

multiplication the usual addition of matrices and multiplication of a matrix by a scalar.
Given are four matrices

v1 =

�
1 2

�1 2

�
; v2 =

�
0 2

�1 4

�
; v3 =

�
0 �1

3 1

�
; v4 =

�
0 �3

2 0

�
:

It is given that B = (v1; v2; v3; v4) is an ordered basis for R2�2.
Let

v =

�
2 �1

6 6

�
:

Find the coordinate vector vB of v relative to B.

Marking:

6 marks

Solution: (See Section 3.3 and Example 5 on pages 210{211.)

Let C = (w1; w2; w3; w4) be another ordered basis for R2�2, where

w1 =

�
1 0

0 0

�
; w2 =

�
0 1

0 0

�
; w3 =

�
0 0

1 0

�
; w4 =

�
0 0

0 1

�
:

The space R2�2 is isomorphic to R4 via the coordinatization isomorphism x 7! xC (x 2 R
2�2,

xC 2 R4). Once this isomorphism is introduced, we can �nd the desired coordinate vector vB using

standard techniques for Rn.

green papers

Using the method on page 207 we �nd

2
664

1 0 0 0 2

2 2 �1 �3 �1

�1 �1 3 2 6

2 4 1 0 6

3
775 �

2
664

1 0 0 0 2

0 1 0 0 0

0 0 1 0 2

0 0 0 1 1

3
775

and so vB = [2; 0; 2; 1].
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pink papers

Using the method on page 207 we �nd

2
664

1 0 0 0 2

2 2 �1 �3 �1

�1 �1 3 2 8

2 4 1 0 3

3
775 �

2
664

1 0 0 0 2

0 1 0 0 �1

0 0 1 0 3

0 0 0 1 0

3
775

and so vB = [2;�1; 3; 0].

7.

Question:

Let F be the vector space of all functions mapping R to R. Let W be the subspace of F spanned by
the four functions 1, x, ex and xex. It is given that B = (1; x; ex; xex) is an ordered basis for W .

Given are two linear transformations T1 : W ! W and T2 : W ! W de�ned by

T1(f) = f 0 (the derivative of f with respect to x) for all f 2 W

T2(f) = f 00 (the second derivative of f with respect to x) for all f 2 W .

Let A1 be the matrix representation of T1 relative to B;B and let A2 be the matrix representation of
T2 relative to B;B.
(a) Find the matrix A1.

(b) Decide whether the transformation T1 is invertible. Justify your answer.
(c) Use the composition of linear transformations to discover a simple relation between A2 and A1.

Justify your answer. Do not compute A2 explicitly, just express it in terms of A1.

Marking:

(a) - 5 marks

(b) - 3 marks
(c) - 2 marks

10 marks total

Solution:

(a) We have T1(1) = 0, T1(x) = 1, T1(e
x) = ex and T1(xe

x) = ex + xex.

Using Theorem 3.10 and De�nition 3.11 on page 223 we �nd

A1 = [T1(1)B T1(x)B T1(e
x)B T1(xe

x)B] =

2
664

0 1 0 0

0 0 0 0

0 0 1 1

0 0 0 1

3
775 :

(b) The transformation T1 is not invertible. This can be seen in many di�erent ways, for example:

- Applying Theorem 3.8 on page 220 and noticing that T1(0) = T1(1) = 0, so T1 is not one-to-one,
see Equation (6) on page 220. Or: (see the next page ...)
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- If the inverse linear transformation T�1
1

exists, then the matrix representation of T�1
1

relative to

B;B is (A1)
�1. But the matrix A1 is not invertible (it contains a column of zeros).

(c) The key observation is f 00 = (f 0)0, that is,

T2 = T1 � T1 (*)

where � denotes the composition of linear transformations, see top of page 214. After recalling that

A1 is the matrix representation for T1 and A2 is the matrix representation for T2 we have for any

w 2 W

A2wB = A1(A1wB) = (A2

1)wB

and, since the matrix representation relative to a �xed pair of bases is unique, we have the desired

relation between A2 and A1:

A2 = A2

1

This relation also follows at once from (*) if one remembers that the composition of linear transfor-
mations corresponds to the multiplication of their matrix representations, see for example the box on
page 150, or the �rst equation on page 397, and many other places throughout the book.

8.

Question:

(a) Given are three points P = (3;�1), Q = (2; 2) and R = (�1; 7). Find the area of the triangle
PQR.
(b) State the row-interchange property for determinants of square matrices. Use it to prove: If two
rows of a square matrix A are equal, then det(A) = 0.

Marking:

(a) - 4 marks

(b) - 4 marks

8 marks total

Solution: �rst (b), then (a)

(b) The row-interchange property for determinants of square matrices states the following: If two

di�erent rows of a square matrix A are interchanged, the determinant of the resulting matrix is
�det(A). (See Property 2 on page 256.)

Let Ri denote the i-th row of A, and assume that Rj and Rk are equal (j 6= k). Let A0 be the matrix
obtained from A by interchanging Rj and Rk. Then A0 = A, and det(A0) = �det(A) by the above

property. Thus det(A) = �det(A) which is only possible if det(A) = 0. (See Property 3 on page

257.)
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green papers

(a) De�ne the vectors

a = [2; 2]� [3;�1] = [�1; 3]

b = [�1; 7]� [3;�1] = [�4; 8] :

The area of the parallelogram determined by the vectors a and b is the absolute value of the deter-

minant

���� ab
����, that is, the absolute value of

���� �1 3

�4 8

���� = (�1) � 8� 3 � (�4) = 4 :

The area of the triangle PQR is one half of the area of the parallelogram, that is 4=2 = 2. (See page
239.)

pink papers

(a) De�ne the vectors

a = [2; 2]� [3;�1] = [�1; 3]

b = [�1; 5]� [3;�1] = [�4; 6] :

The area of the parallelogram determined by the vectors a and b is the absolute value of the deter-

minant

���� ab
����, that is, the absolute value of

���� �1 3

�4 6

���� = (�1) � 6� 3 � (�4) = 6 :

The area of the triangle PQR is one half of the area of the parallelogram, that is 6=2 = 3. (See page
239.)

9.

Question:

Evaluate the determinant.

Marking:

4 marks

Solution: See the next page. (See Theorem 4.2 on page 254 and Property 5 on page 258.)
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green papers

��������

0 3 3 5

1 0 �2 1

0 0 3 �4

�2 0 1 7

��������
= 3 � (�1)1+2 �

������
1 �2 1

0 3 �4

�2 1 7

������ = �3 �

������
1 �2 1

0 3 �4

0 �3 9

������

= �3 �
���� 3 �4

�3 9

���� = �3 � (3 � 9� (�4) � (�3)) = �3 � 15 = �45:

pink papers

��������

0 2 3 5

1 0 �2 1

0 0 3 �4

�3 0 1 7

��������
= 2 � (�1)1+2 �

������
1 �2 1

0 3 �4

�3 1 7

������ = �2 �

������
1 �2 1

0 3 �4

0 �5 10

������

= �2 �
���� 3 �4

�5 10

���� = �2 � (3 � 10 � (�4) � (�5)) = �2 � 10 = �20:

10.

Question:

Let

A =

2
4 1 �2 1

0 1 �1

0 2 �2

3
5 :

(a) Find the eigenvalues and corresponding eigenspaces of A.

(b) Use diagonalization to compute A2000. Give your answer in the form of a single 3� 3 matrix.

(c) Decide whether the matrix

B =

�
4 3

0 4

�

is diagonalizable. Justify your answer.

Marking:

(a) - 5 marks
(b) - 3 marks

(c) - 3 marks

11 marks total
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Solution: (See Sections 5.1 and 5.2.)

(a) The characteristic polynomial of A is

det(A� �I) =

������
1 � � �2 1

0 1� � �1

0 2 �2� �

������ = (1 � �)

���� 1� � �1

2 �2� �

����
= (1 � �)((1 � �)(�2 � �) � (�1)2) = (1� �)(� + �2) = (1� �)�(1 + �) :

Thus the eigenvalues of A are �1 = 1, �2 = 0 and �3 = �1.

Since all eigenvalues are di�erent, the corresponding eigenspaces E�i
(i = 1; 2; 3) all have dimen-

sion 1. The bases for the eigenspaces E�i
are found by solving the homogeneous linear systems

(A� �iI)x = 0. By Gauss reduction we obtain2
4 1 � 1 �2 1

0 1 � 1 �1

0 2 �2 � 1

3
5 =

2
4 0 �2 1

0 0 �1

0 2 �3

3
5 �

2
4 0 1 0

0 0 1

0 0 0

3
5

2
4 1 � 0 �2 1

0 1 � 0 �1

0 2 �2 � 0

3
5 =

2
4 1 �2 1

0 1 �1

0 2 �2

3
5 �

2
4 1 0 �1

0 1 �1

0 0 0

3
5

2
4 1 � (�1) �2 1

0 1� (�1) �1

0 2 �2� (�1)

3
5 =

2
4 2 �2 1

0 2 �1

0 2 �1

3
5 �

2
4 1 0 0

0 1 �1=2

0 0 0

3
5

Therefore the eigenspaces are E1 = sp([1; 0; 0]), E0 = sp([1; 1; 1]) and E�1 = sp([0; 1=2; 1]) =

sp([0; 1; 2]).

(b) By Theorem 5.3 on page 308, A is diagonalizable. Let

C =

2
4 1 1 0

0 1 1

0 1 2

3
5

D =

2
4 1 0 0

0 0 0

0 0 �1

3
5 :

Then C�1AC = D and Ak = CDkC�1. (See page 307.) The inverse of C can be computed, for

example, using the method on page 80. We obtain

C�1 =

2
4 1 �2 1

0 2 �1

0 �1 1

3
5

and so

A2000 =

2
4 1 1 0

0 1 1

0 1 2

3
5
2
4 1 0 0

0 0 0

0 0 �1

3
5
20002

4 1 �2 1

0 2 �1

0 �1 1

3
5

=

2
4 1 1 0

0 1 1

0 1 2

3
5
2
4 1 0 0

0 0 0

0 0 1

3
5
2
4 1 �2 1

0 2 �1

0 �1 1

3
5 =

2
4 1 �2 1

0 �1 1

0 �2 2

3
5 :
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green papers

(c) Let

B =

�
4 3

0 4

�
:

The characteristic polynomial of B is det(B � �I) = (4 � �)2 � 3 � 0 = (4 � �)2 and so �1 = 4 is

an eigenvalue of B with algebraic multiplicity 2. By solving the homogeneous system (B� 4I)x = 0

we �nd that the eigenspace corresponding to the eigenvalue 4 is E4 = sp([1; 0]). Thus the geometric

multiplicity of the eigenvalue 4 is 1. By Theorem 5.4 (page 313), the matrix B is not diagonalizable.

pink papers

(c) Let

B =

�
3 �2

0 3

�
:

The characteristic polynomial of B is det(B� �I) = (3� �)2� (�2) � 0 = (3� �)2 and so �1 = 3 is
an eigenvalue of B with algebraic multiplicity 2. By solving the homogeneous system (B� 3I)x = 0

we �nd that the eigenspace corresponding to the eigenvalue 3 is E3 = sp([1; 0]). Thus the geometric
multiplicity of the eigenvalue 3 is 1. By Theorem 5.4 (page 313), the matrix B is not diagonalizable.

11.

Question:

(a) Let a = [2; 1;�1] and b = [�1; 3; 0]. Find the projection of b on sp(a).
(b) Let W be the subspace of R3 de�ned by

W = f[x; y; z] 2 R3 j x+ y � z = 0g:

Write down the basis for W?, the orthogonal complement of W .

(c) Let c = [2; 1; 6]. Find the projection of c on W .

Marking:

(a) - 2 marks
(b) - 3 marks

(c) - 4 marks

9 marks total

Solution:

green papers

(a) Let p be the projection of b on sp(a). Using Equation (1) on page 327 we �nd

p =
b � a

a � a
a =

�1 � 2 + 3 � 1 + 0 � (�1)

2 � 2 + 1 � 1 + (�1) � (�1)
[2; 1;�1] =

1

6
[2; 1;�1] :
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(b) This is a special instance of Illustration 3 on page 331, which in this case takes the form

W = f[x; y; z] 2 R3 j [1; 1;�1] � [x; y; z] = 0g

and so

W? = sp([1; 1;�1]) :

An alternative solution is to start by �nding a basis for W . One can view the de�ning equation

of W , that is x + y � z = 0, as a homogeneous linear system whose coe�cient matrix [1 1 � 1]

already is in the reduced row-echelon form. By the standard methods of Section 1.6 we �nd that

B = f[�1; 1; 0]; [1; 0; 1]g is a basis for W and then using the method on page 330 (�nding the

nullspace of the matrix that has the two vectors in B as its rows) we arrive at the same result

W? = sp([1; 1;�1]).

(c) Let cW denote the projection of c on W , thus cW 2 W . Recall that c can be written uniquely as

c = cW + cW? (*)

where cW? 2 W?, in fact cW? is the projection of c on W?. Since W? = sp([1; 1;�1]), see the
result of part (b), it is easy to compute

cW? =
c � [1; 1;�1]

[1; 1;�1] � [1; 1;�1]
[1; 1;�1] =

�3

3
[1; 1;�1] = [�1;�1; 1]

and from (*) we get

cW = c� cW? = [2; 1; 6]� [�1;�1; 1] = [3; 2; 5] :

This approach is taken in Example 5 on page 334.

Alternatively, one can use the standard method for �nding projections of vectors on subspaces, see
the box on page 333. Utilizing the basis B that we found in part (b) we take
B0 = f[�1; 1; 0]; [1; 0; 1]; [1; 1;�1]g as a basis for R3 (with the �rst two vectors spanning W and
the third vector spanning W?) and then we �nd (using the method on page 207) that the coordinate

vector of c relative to B0 is

cB0 = [2; 5;�1] :

Then we get

cW = 2[�1; 1; 0] + 5[1; 0; 1] = [3; 2; 5] :

pink papers

The solution is completely analogous. The results for parts (a), (b) and (c) are

p =
5

6
[1; 2;�1]

W? = sp([1;�1; 1])

cW = [0; 3; 3] :
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12.

Question:

Let V = sp(a1;a2;a3) be the subspace of R
4 spanned by the vectors a1 = [1; 0; 0; 1], a2 = [1; 1; 0; 1]

and a3 = [0; 1;�1; 0].

(a) Find an orthogonal basis for V .

(b) Use your answer to part (a) to �nd an orthonormal basis for V .

Marking:

(a) - 6 marks

(b) - 2 marks

8 marks total

Solution:

(a) We use the Gram-Schmidt orthogonalization process. See Section 6.2. It is possible to take
advantage of the fact that the vectors a1 and a3 are orthogonal; in this approach we set

v1 = a1 = [1; 0; 0; 1]

v2 = a3 = [0; 1;�1; 0]

and

v3 = a2 �
a2 � v1

v1 � v1
v1 �

a2 � v2

v2 � v2
v2 = [1; 1; 0; 1]� 2

2
[1; 0; 0; 1]� 1

2
[0; 1;�1; 0] = [0;

1

2
;
1

2
; 0] :

Then fv1;v2;v3g is an orthogonal basis for V .

On the other hand, if we use the ordering a1, a2, a3, then the Gram-Schmidt orthogonalization
process yields the following orthogonal basis for V :

f[1; 0; 0; 1]; [0; 1; 0; 0]; [0; 0;�1; 0]g :

(b) To obtain an orthonormal basis for V , we take an orthogonal basis for V , obtained in part (a), and
normalize each basis vector vi by scaling it with the factor 1

kvik
. For example, the second orthogonal

basis from part (a) leads to the following orthonormal basis for V :

�
1p
2
[1; 0; 0; 1]; [0; 1; 0; 0]; [0; 0;�1; 0]

�

13



13.

Question:

The following data points are given:

(�2; 0); (�1; 1); (0; 3); (1; 6) :

Find the least-squares linear �t for these data points.

Marking:

7 marks

Solution:
green papers

See Section 6.5 (pages 372{374). We are faced with the system of linear approximations2
664

1 �2

1 �1

1 0

1 1

3
775
�
r0
r1

�
�

2
664

0

1

3

6

3
775 :

The least-squares solution of this system is obtained by solving the system of two linear equations

�
1 1 1 1

�2 �1 0 1

�
2
664

1 �2

1 �1

1 0

1 1

3
775
�
r0
r1

�
=

�
1 1 1 1

�2 �1 0 1

�
2
664

0

1

3

6

3
775 :

(See the box on page 374.) After performing the matrix multiplications we end up with solving the
system

4r0 � 2r1 = 10

�2r0 + 6r1 = 5

whose unique solution is r0 = 7=2, r1 = 2. Thus the least-squares linear �t for the given data points
is

y = 2x +
7

2
:

pink papers

The solution is completely analogous. The linear system for r0; r1 is

4r0 + 2r1 = 10

2r0 + 6r1 = 15

and the least-squares linear �t for the given data points is

y = 2x +
3

2
:
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14.

Question:

Let E = (e1; e2) be the standard ordered basis for R2. Let b1 = [2; 1], b2 = [�3;�2] and let

B = (b1; b2) be an ordered basis for R2.

Let T : R2 ! R
2 be the linear transformation de�ned by T ([x1; x2]) = [x1 + x2; x1 � x2] for every

[x1; x2] 2 R2.

(a) Write down the standard matrix representation of T .

(b) Find the change-of-coordinates matrix from E to B.

(c) Find the matrix representation of T relative to B.

Marking:

(a) - 2 marks
(b) - 2 marks

(c) - 3 marks

7 marks total

Solution: (See Sections 7.1 and 7.2.)
green papers

(a) The standard matrix representation of T is the matrix representation of T relative to E. See page
146 and Example 2 on page 399. We have, using the notation of Section 7.2,

RE = [T (e1) T (e2)] =

�
1 1

1 �1

�
:

(b) LetMB = [b1 b2], see Equation 2 on page 389. By the standard method on page 391 we compute

�
2 �3 1 0

1 �2 0 1

�
�
�

1 0 2 �3

0 1 1 �2

�

and so the change-of-coordinates matrix from E to B is

CE;B =

�
2 �3

1 �2

�
:

Comments: Of course CE;B = M�1
B for any basis B. For 2 � 2 matrices computing the inverse is

faster using the adjoint matrix than by Gauss reduction, see page 270. The fact that M�1
B = MB in

this particular example is a mere coincidence; it does not hold in general of course.

(c) See Theorem 7.1 on page 399. We have

RB = CE;BRECB;E

and using the results of (a) and (b), along with the simple fact that CB;E = MB, gives

RB =

�
2 �3

1 �2

� �
1 1

1 �1

� �
2 �3

1 �2

�
=

�
3 �7

1 �3

�
:
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The solution is analogous. The results for parts (a), (b) and (c) are

RE =

�
1 1

�1 1

�

CE;B =

�
2 3

1 2

�

RB =

�
�7 13

�5 9

�
:

16


