DEPARTMENT OF MATHEMATICS AND STATISTICS

First Midterm Key
MATH 232
February 3, 1999
11:30-12:20 a.m.
[3] 1. Compute a vector $x \in \mathbb{R}^{3}$ such that

$$
[1,-2,1]-2 \boldsymbol{x}=[5,2,-3] .
$$

ANSWER

$$
[-2,-2,2]
$$

EXPLANATION

$$
2 \boldsymbol{x}=[1,-2,1]-[5,2,-3]=[-4,-4,4] .
$$

2. The diagram below shows points O, A, B, C, D, E in \mathbb{R}^{2}, O being the origin. The figure $O A C B$ is a parallelogram, D is the midpoint of the line segment $A B$, and E is the midpoint of $B C$.

The points A, B have coordinate vectors $\boldsymbol{a}, \boldsymbol{b}$, respectively, while O has coordinate vector $\mathbf{0}=[0,0]$.

[2] (a) Write down the coordinate vector of D in terms of a, b.

ANSWER

$$
\frac{1}{2}(\boldsymbol{a}+\boldsymbol{b})
$$

[2] (b) Write down the coordinate vector of E in terms of a, b.

$$
\begin{aligned}
& \text { ANSWER } \\
& \boldsymbol{b}+\frac{1}{2} \boldsymbol{a}
\end{aligned}
$$

EXPLANATION

Since D is midpoint of the line segment $A B$, its coordinate vector is the mean of the coordinate vectors of \boldsymbol{a} and \boldsymbol{b}. C has vector $\boldsymbol{a}+\boldsymbol{b}$. Since E is midpoint of the line segment $B C$, its coordinate vector is the mean of \boldsymbol{b} and $\boldsymbol{a}+\boldsymbol{b}$.
[2] 3. (a) Compute the dot product

$$
[4,1,-1,2] \cdot[-1,3,-3,-1] .
$$

ANSWER
0
0

[2] (b) Compute the norm

$$
\|[-1,7,5,6,-1,3]\| .
$$

ANSWER

11
[2] (c) Find a unit vector orthogonal to

$$
[1,-2,1] .
$$

ANSWER
$[1 / \sqrt{2}, 0,-1 / \sqrt{2}]$

EXPLANATION

Parts (a) and (b) are immediate from the definitions.
For part (c), any unit vector \boldsymbol{x} such that $\left[x_{1}, x_{2}, x_{3}\right] \cdot[1,-2,1]=0$ will do.
[2] 4. (a) Write down the augmented matrix of the system:

ANSWER	
	$\left[\begin{array}{llll\|l}2 & 1 & 1 & 1 & 2 \\ 4 & 2 & 0 & 2 & 4\end{array}\right]$

$$
\left\{\begin{aligned}
2 x_{1}+x_{2}+x_{3}+x_{4} & =2 \\
4 x_{1}+2 x_{2}+2 x_{4} & =4
\end{aligned}\right.
$$

ANSWER	
	$\left[\begin{array}{cccc\|c}1 & \frac{1}{2} & 0 & \frac{1}{2} & 1 \\ 0 & 0 & 1 & 0 & 0\end{array}\right]$

EXPLANATION

One possible sequence of row operations is

$$
R_{2} \rightarrow(-1 / 2) R_{2}, \quad R_{2} \rightarrow R_{2}+R_{1}, \quad R_{1} \rightarrow R_{1}-R_{2}
$$

5. Consider the system of linear equations $A \boldsymbol{x}=\boldsymbol{b}$, where $\boldsymbol{x}=\left[x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right], \boldsymbol{b} \in \mathbb{R}^{5}$, and $A \in \mathbb{R}^{4 \times 5}$.

It is given that the reduced row-echelon form of the augmented matrix $[A \mid \boldsymbol{b}]$ is the matrix.

$$
\left[\begin{array}{rrrrr|r}
1 & 2 & 0 & -1 & 0 & -3 \\
0 & 0 & 1 & 2 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 2 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

[5] (a) Find the general solution of the system $A \boldsymbol{x}=\boldsymbol{b}$ writing your final answer in vectorial form in the box below.

ANSWER

$$
\boldsymbol{x}=\left[\begin{array}{r}
-3 \\
0 \\
1 \\
0 \\
2
\end{array}\right]+c\left[\begin{array}{r}
-2 \\
1 \\
0 \\
0 \\
0
\end{array}\right]+d\left[\begin{array}{r}
1 \\
0 \\
-2 \\
1 \\
0
\end{array}\right] \quad(c, d \in \mathbb{R})
$$

OR

$$
\boldsymbol{x}=[-3,0,1,0,2]+c[-2,1,0,0]+d[1,0,-2,1,0] \quad(c, d \in \mathbb{R})
$$

[2] (b) Using your answer to (a), write down the general solution of the homogeneous system $A x=0$ writing your final answer in vectorial form in the box below.

ANSWER

$$
\boldsymbol{x}=c\left[\begin{array}{r}
-2 \\
1 \\
0 \\
0 \\
0
\end{array}\right]+d\left[\begin{array}{r}
1 \\
0 \\
-2 \\
1 \\
0
\end{array}\right] \quad(c, d \in \mathbb{R})
$$

OR

$$
\boldsymbol{x}=c[-2,1,0,0]+d[1,0,-2,1,0] \quad(c, d \in \mathbb{R})
$$

EXPLANATION

Here we have used the standard algorithm for solving systems of linear equations.
6. Let A denote the matrix:

$$
\left[\begin{array}{rrr}
2 & 0 & 1 \\
-2 & 1 & 0 \\
1 & 0 & 1
\end{array}\right]
$$

[3] (a) Find row operations $\rho_{1}, \rho_{2}, \ldots, \rho_{k}$ such that $\rho_{k}\left(\ldots \rho_{2}\left(\rho_{1}(A)\right) \ldots\right)=I$.

This can be done with three row operations but one might use more.

$$
\begin{aligned}
& \text { ANSWER } \\
& \rho_{1}=R_{1} \rightarrow R_{1}-R_{3} \\
& \rho_{2}=R_{2} \rightarrow R_{2}+2 R_{1} \\
& \rho_{3}=R_{3} \rightarrow R_{3}-R_{1} \\
& \rho_{4}= \\
& \rho_{5}= \\
& \rho_{6}=
\end{aligned}
$$

[2] (b) Based on your answer to (a), express A as a product of elementary matrices.

ANSWER

$$
A=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{rrr}
1 & 0 & 0 \\
-2 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
1 & 0 & 1
\end{array}\right]
$$

[2] (c) Based on your answer to (b), express A^{-1} as a product of elementary matrices.

$$
\begin{aligned}
& \text { ANSWER } \\
& \qquad \quad A^{-1}=\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 0 \\
-1 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{rrr}
1 & 0 & -1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

[3] 7. Let vectors $\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \ldots, \boldsymbol{a}_{k}$ in \mathbb{R}^{n} be given.
Describe a procedure for finding a basis of $\operatorname{sp}\left(\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \ldots, \boldsymbol{a}_{k}\right)$.

ANSWER

Form the $n \times k$ matrix A whose columns are $\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \ldots, \boldsymbol{a}_{k}$ in that order.
Let H be the row-reduced echelon matrix obtained from A by row-operations.
Let the pivots of H fall in the columns numbered $j_{1}, j_{2}, \ldots, j_{r}$. Then

$$
\left\{\boldsymbol{a}_{j_{1}}, \boldsymbol{a}_{j_{2}}, \ldots, \boldsymbol{a}_{j_{r}}\right\}
$$

is a basis for $\operatorname{sp}\left(\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \ldots, \boldsymbol{a}_{k}\right)$.
[2] 8 . Let A be the 4×5 matrix from question 5 on page 3 .
Write down a basis for the nullspace of A which is defined to be

$$
\left\{\boldsymbol{x} \in \mathbb{R}^{5}: A \boldsymbol{x}=0\right\}
$$

ANSWER

$$
\{[-2,1,0,0,0],[1,0,-2,1,0]\} .
$$

[2] 9. The definition of basis says that $\left\{\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \ldots, \boldsymbol{a}_{k}\right\}$ is a basis for \mathbb{R}^{n} if $\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \ldots, \boldsymbol{a}_{k} \in$ \mathbb{R}^{n} are distinct and for every $\boldsymbol{v} \in \mathbb{R}^{n}$ there are unique $c_{1}, c_{2}, \ldots, c_{k}$ in \mathbb{R} such that

$$
c_{1} \boldsymbol{a}_{1}+\ldots+c_{k} \boldsymbol{a}_{k}=\boldsymbol{v}
$$

Show from first principles that \mathbb{R}^{5} has a basis of size 5 .

ANSWER

From the definition of addition and scalar multiplication for \mathbb{R}^{5} we have

$$
\left[c_{1}, c_{2}, \ldots, c_{5}\right]=c_{1} \boldsymbol{e}_{1}+\ldots+c_{5} \boldsymbol{e}_{5}
$$

for all $c_{1}, c_{2}, \ldots, c_{5} \in \mathbb{R}$.
This equation shows that every c in \mathbb{R}^{5} is expressible as a linear combination of $e_{1}, e_{2}, \ldots, e_{5}$ and that the coefficients are unique.
[2] 10. In this question you may assume the conclusion of question 9 and that every basis of \mathbb{R}^{5} has size 5 . You may not assume anything else.

Let $\boldsymbol{b}_{1}, \boldsymbol{b}_{2}, \boldsymbol{b}_{3}, \boldsymbol{b}_{4}$ be distinct linearly independent vectors in \mathbb{R}^{5}.
Prove that there exists a vector c in \mathbb{R}^{5} such that $\left\{\boldsymbol{b}_{1}, \boldsymbol{b}_{2}, \boldsymbol{b}_{3}, \boldsymbol{b}_{4}, \boldsymbol{c}\right\}$ is linearly independent.

ANSWER

If each of $\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \ldots, \boldsymbol{e}_{5}$ is in the span of $B=\left\{\boldsymbol{b}_{1}, \boldsymbol{b}_{2}, \boldsymbol{b}_{3}, \boldsymbol{b}_{4}\right\}$, then $\operatorname{sp}(B)=\mathbb{R}^{5}$. Moreover, the linear independence of B implies that, when we write $c \in \mathbb{R}^{5}$ as a linear combination of $\boldsymbol{b}_{1}, \boldsymbol{b}_{2}, \boldsymbol{b}_{3}, \boldsymbol{b}_{4}$, the coefficients are unique. So B is a basis for \mathbb{R}^{5}, contradiction. Thus there exists $j, 1 \leq j \leq 5$, such that $e_{j} \notin \operatorname{sp}(B)$.

We claim that $B \cup\left\{e_{j}\right\}$ is linearly independent. Suppose not. Then there are real numbers $r_{1}, r_{2}, r_{3}, r_{4}, s$ not all 0 such that such that $r_{1} \boldsymbol{b}_{1}+\ldots+r_{4} \boldsymbol{b}_{4}+s \boldsymbol{e}_{j}=\mathbf{0}$. If $s=0$, then the linear inependence of B is contradicted. Otherwise, we get

$$
\boldsymbol{e}_{j}=\left(-r_{1} / s\right) \boldsymbol{b}_{1}+\ldots+\left(-r_{4} / s\right) \boldsymbol{b}_{4}
$$

which contradicts $e_{j} \notin \operatorname{sp}(B)$. The claim is now clear.

