DEPARTMENT OF MATHEMATICS AND STATISTICS

First Midterm Key

MATH 232 February 3, 1999

11:30 - 12:20 a.m.

[3] **1. Compute a vector** $x \in \mathbb{R}^3$ such that [1, -2, 1] - 2x = [5, 2, -3].[-2, -2, 2]

EXPLANATION

$$2\boldsymbol{x} = [1, -2, 1] - [5, 2, -3] = [-4, -4, 4]$$

2. The diagram below shows points O, A, B, C, D, E in \mathbb{R}^2 , O being the origin. The figure OACB is a parallelogram, D is the midpoint of the line segment AB, and E is the midpoint of BC.

The points A, B have coordinate vectors \boldsymbol{a} , \boldsymbol{b} , respectively, while O has coordinate vector $\boldsymbol{0} = [0, 0]$.

[2] (a) Write down the coordinate vector of D in terms of a, b.

ANSWER
$$\frac{1}{2}(\boldsymbol{a}+\boldsymbol{b})$$

(b) Write down the coordinate vector of E in terms of a, b.

ANSWER
$$oldsymbol{b}+rac{1}{2}oldsymbol{a}$$

EXPLANATION

[2]

Since D is midpoint of the line segment AB, its coordinate vector is the mean of the coordinate vectors of a and b. C has vector a + b. Since E is midpoint of the line segment BC, its coordinate vector is the mean of b and a + b.

 $\left[1/\sqrt{2}, 0, -1/\sqrt{2}\right]$

[1, -2, 1].

EXPLANATION

Parts (a) and (b) are immediate from the definitions.

For part (c), any unit vector \boldsymbol{x} such that $[x_1, x_2, x_3] \cdot [1, -2, 1] = 0$ will do.

[2] 4. (a) Write down the augmented matrix of the system: $\begin{cases}
2 & 1 & 1 & 1 & 2 \\
4 & 2 & 0 & 2 & 4
\end{cases}$ [2] (b) Convert the matrix from (a) to reduced row-echelon form by row operations. Write the final answer in the answer box. $\begin{cases}
1 & \frac{1}{2} & 0 & \frac{1}{2} & 1 \\
0 & 0 & 1 & 0 & 0
\end{cases}$ ANSWER $\begin{bmatrix}
1 & \frac{1}{2} & 0 & \frac{1}{2} & 1 \\
0 & 0 & 1 & 0 & 0
\end{bmatrix}$

EXPLANATION

One possible sequence of row operations is

$$R_2 \to (-1/2)R_2, \ R_2 \to R_2 + R_1, \ R_1 \to R_1 - R_2.$$

5. Consider the system of linear equations $A \boldsymbol{x} = \boldsymbol{b}$, where $\boldsymbol{x} = [x_1, x_2, x_3, x_4, x_5]$, $\boldsymbol{b} \in \mathbb{R}^5$, and $A \in \mathbb{R}^{4 \times 5}$.

It is given that the reduced row-echelon form of the augmented matrix [A|b] is the matrix.

1	2	0	-1	0	-3
0	0	1	2	0	1
0	0	0	0	1	2
0	0	0	0	0	0

[5]

(a) Find the general solution of the system Ax = b writing your final answer in vectorial form in the box below.

ANSWER	
	$\boldsymbol{x} = \begin{bmatrix} -3 \\ 0 \\ 1 \\ 0 \\ 2 \end{bmatrix} + c \begin{bmatrix} -2 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} + d \begin{bmatrix} 1 \\ 0 \\ -2 \\ 1 \\ 0 \end{bmatrix} (c, d \in \mathbb{R})$
OR	
$oldsymbol{x}$ =	$[-3, 0, 1, 0, 2] + c[-2, 1, 0, 0] + d[1, 0, -2, 1, 0] \qquad (c, d \in \mathbb{R})$

[2] (b) Using your answer to (a), write down the general solution of the homogeneous system Ax = 0 writing your final answer in vectorial form in the box below.

ANSWER		
	$\boldsymbol{x} = c \begin{bmatrix} -2\\1\\0\\0\\0 \end{bmatrix} + d \begin{bmatrix} 1\\0\\-2\\1\\0 \end{bmatrix} \qquad (c, d \in \mathbb{R})$	
OR		
	$\boldsymbol{x} = c[-2, 1, 0, 0] + d[1, 0, -2, 1, 0]$ $(c, d \in \mathbb{R})$	

EXPLANATION

Here we have used the standard algorithm for solving systems of linear equations.

[3]

$$\left[\begin{array}{rrrrr} 2 & 0 & 1 \\ -2 & 1 & 0 \\ 1 & 0 & 1 \end{array}\right]$$

(a) Find row operations ρ_1 , ρ_2 , ..., ρ_k such that $\rho_k(\ldots \rho_2(\rho_1(A))\ldots) = I$.

This can be done with three row operations but one might use more.

ANSWER $o_1 = B$	$P_1 \rightarrow B_1 - B_2$
	51 / 101 103
$\rho_2 = R$	$\mathcal{C}_2 \to \mathcal{R}_2 + 2\mathcal{R}_1$
$\rho_3 = R$	$R_3 \rightarrow R_3 - R_1$
P3 1	20 7 × 63 × 61
$\rho_4 =$	
$\rho_5 =$	
, ,	
$\rho_6 =$	

[2] (b) Based on your answer to (a), express A as a product of elementary matrices.

ANSWER

$$A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$

[2] (c) Based on your answer to (b), express A^{-1} as a product of elementary matrices.

ANSWER $A^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ [3] 7. Let vectors a_1, a_2, \ldots, a_k in \mathbb{R}^n be given.

Describe a procedure for finding a basis of $sp(a_1, a_2, ..., a_k)$.

ANSWER

Form the $n \times k$ matrix A whose columns are a_1, a_2, \ldots, a_k in that order. Let H be the row-reduced echelon matrix obtained from A by row-operations. Let the pivots of H fall in the columns numbered j_1, j_2, \ldots, j_r . Then

$$\{a_{j_1}, a_{j_2}, \ldots, a_{j_r}\}$$

is a basis for $sp(a_1, a_2, \ldots, a_k)$.

[2] 8. Let A be the 4×5 matrix from question 5 on page 3.

Write down a basis for the nullspace of A which is defined to be

$$\left\{ \boldsymbol{x} \in \mathbb{R}^5 : A \boldsymbol{x} = \boldsymbol{0} \right\}$$

ANSWER

$$\{[-2,1,0,0,0],[1,0,-2,1,0]\}$$
 .

[2] 9. The definition of *basis* says that $\{a_1, a_2, \ldots, a_k\}$ is a basis for \mathbb{R}^n if $a_1, a_2, \ldots, a_k \in \mathbb{R}^n$ are distinct and for every $v \in \mathbb{R}^n$ there are unique c_1, c_2, \ldots, c_k in \mathbb{R} such that

 $c_1 \boldsymbol{a}_1 + \ldots + c_k \boldsymbol{a}_k = \boldsymbol{v}$.

Show from first principles that \mathbb{R}^5 has a basis of size 5.

ANSWER

From the definition of addition and scalar multiplication for \mathbb{R}^5 we have

$$[c_1, c_2, \ldots, c_5] = c_1 \boldsymbol{e}_1 + \ldots + c_5 \boldsymbol{e}_5$$

for all $c_1, c_2, \ldots, c_5 \in \mathbb{R}$.

This equation shows that every c in \mathbb{R}^5 is expressible as a linear combination of e_1, e_2, \ldots, e_5 and that the coefficients are unique.

[2] 10. In this question you may assume the conclusion of question 9 and that *every* basis of \mathbb{R}^5 has size 5. You may **not** assume anything else.

Let b_1 , b_2 , b_3 , b_4 be distinct linearly independent vectors in \mathbb{R}^5 .

Prove that there exists a vector c in \mathbb{R}^5 such that $\{b_1, b_2, b_3, b_4, c\}$ is linearly independent.

ANSWER

If each of e_1, e_2, \ldots, e_5 is in the span of $B = \{b_1, b_2, b_3, b_4\}$, then $sp(B) = \mathbb{R}^5$. Moreover, the linear independence of B implies that, when we write $c \in \mathbb{R}^5$ as a linear combination of b_1, b_2, b_3, b_4 , the coefficients are unique. So B is a basis for \mathbb{R}^5 , contradiction. Thus there exists $j, 1 \leq j \leq 5$, such that $e_j \notin sp(B)$.

We claim that $B \cup \{e_j\}$ is linearly independent. Suppose not. Then there are real numbers r_1, r_2, r_3, r_4, s not all 0 such that such that $r_1b_1 + \ldots + r_4b_4 + se_j = 0$. If s = 0, then the linear inependence of B is contradicted. Otherwise, we get

 $\boldsymbol{e}_j = (-r_1/s)\boldsymbol{b}_1 + \ldots + (-r_4/s)\boldsymbol{b}_4$

which contradicts $e_j \notin sp(B)$. The claim is now clear.