MATH 232
First Midterm
October 6, 1999

ANSWER KEY

1.

Question:

$\frac{\text { Marking: }}{2 \text { marks }}$
Solution:

$$
\begin{aligned}
3 \boldsymbol{x}-[2,1,-1] & =[7,-2,4] \\
3 \boldsymbol{x} & =[9,-1,3] \\
\boldsymbol{x} & =\left[3,-\frac{1}{3}, 1\right]
\end{aligned}
$$

2.

Question:
Write \boldsymbol{c} as a linear combination of \boldsymbol{r} and \boldsymbol{b}.
(See the text of the exam for the description of the vectors $\boldsymbol{c}, \boldsymbol{r}$ and \boldsymbol{b}.)
Marking:
3 marks for a correct solution
1 mark for correct notation (vector algebra)
4 marks total
Solution:
Let \boldsymbol{a} denote the vector represented by the point A. Since R is the midpoint of $O A$, we have $\boldsymbol{a}=2 \boldsymbol{r}$.
Since $O A B C$ is a parallelogram, we have $\boldsymbol{b}=\boldsymbol{a}+\boldsymbol{c}$. After substituting for \boldsymbol{a} we obtain $\boldsymbol{b}=2 \boldsymbol{r}+\boldsymbol{c}$.
Thus $\boldsymbol{c}=-2 \boldsymbol{r}+\boldsymbol{b}$.

3.

Question:
(a) Find all values $c \in \mathbb{R}$ such that the vectors $[1,-4,7]$ and $[-3, c, 5]$ are orthogonal.
(b) Compute the norm $\|[-3,2,4,0,-2]\|$.
(c) Find a unit vector parallel to the vector $[-2,1,2,-4]$.

Marking:
(a), (b), (c) - 2 marks each

Solution:

(a) The vectors $[1,-4,7]$ and $[-3, c, 5]$ are orthogonal iff $[1,-4,7] \cdot[-3, c, 5]=0$, that is, $-3-4 c+35=0$. The only value of c that satisfies this equation is $c=8$.
(b) $\|[-3,2,4,0,-2]\|=\sqrt{(-3)^{2}+2^{2}+4^{2}+0^{2}+(-2)^{2}}=\sqrt{33}$.
(c) The norm of a unit vector is equal to 1 . Two nonzero vectors are parallel iff one is a scalar multiple of the other one. For any scalar $r \in \mathbb{R}$ and any vector $\boldsymbol{v} \in \mathbb{R}^{n}$ we have $\|r \boldsymbol{v}\|=|r|\|\boldsymbol{v}\|$ (the homogeneity property of the norm). If $\|r \boldsymbol{v}\|=1$, then $|r|=\frac{1}{\|v\|_{1}}$, which implies $r=\frac{1}{\|v\|^{2}}$ or $r=-\frac{1}{\|v\|}$. Let $\boldsymbol{w}=[-2,1,2,-4]$ be the given vector. We have $\|\boldsymbol{w}\|=\sqrt{(-2)^{2}+1^{2}+2^{2}+(-4)^{2}}=$ $\sqrt{25}=5$. Hence, the unit vectors parallel to \boldsymbol{w} are $\frac{1}{5} \boldsymbol{w}=\left[-\frac{2}{5}, \frac{1}{5}, \frac{2}{5},-\frac{4}{5}\right]$ and $-\frac{1}{5} \boldsymbol{w}=\left[\frac{2}{5},-\frac{1}{5},-\frac{2}{5}, \frac{4}{5}\right]$. Either of these two vectors is a sufficient answer to the question, since we were asked for "a vector" (not "all vectors").

4.

Question:
(a) Write down the augmented matrix of the system:

$$
\left\{\begin{aligned}
2 x_{1}-2 x_{2}-4 x_{3}= & -6 \\
x_{1}+2 x_{2}+4 x_{3}= & 3 \\
4 x_{2}+11 x_{3}= & 8
\end{aligned}\right.
$$

(b) Convert the matrix from (a) to reduced row-echelon form by row operations.

Marking:
(a) - 2 marks
(b) - 3 marks

Solution:

(a)

$$
\left[\begin{array}{rrr|r}
2 & -2 & -4 & -6 \\
1 & 2 & 4 & 3 \\
0 & 4 & 11 & 8
\end{array}\right]
$$

(b) One possible sequence of elementary row operations is

$$
\begin{aligned}
& {\left[\begin{array}{rrr|r}
2 & -2 & -4 & -6 \\
1 & 2 & 4 & 3 \\
0 & 4 & 11 & 8
\end{array}\right] \underset{R_{1} \rightarrow \frac{1}{2} R_{1}}{\sim}\left[\begin{array}{rrr|r}
1 & -1 & -2 & -3 \\
1 & 2 & 4 & 3 \\
0 & 4 & 11 & 8
\end{array}\right] \underset{R_{2} \rightarrow R_{2}-R_{1}}{\sim}\left[\begin{array}{rrr|r}
1 & -1 & -2 & -3 \\
0 & 3 & 6 & 6 \\
0 & 4 & 11 & 8
\end{array}\right]} \\
& \underset{R_{2} \rightarrow \frac{1}{3} R_{2}}{\sim}\left[\begin{array}{rrr|r}
1 & -1 & -2 & -3 \\
0 & 1 & 2 & 2 \\
0 & 4 & 11 & 8
\end{array}\right] \underset{R_{3} \rightarrow R_{3}-4 R_{2}}{\sim}\left[\begin{array}{rrr|r}
1 & -1 & -2 & -3 \\
0 & 1 & 2 & 2 \\
0 & 0 & 3 & 0
\end{array}\right] \underset{R_{3} \rightarrow \frac{1}{3} R_{3}}{\sim}\left[\begin{array}{rrr|r}
1 & -1 & -2 & -3 \\
0 & 1 & 2 & 2 \\
0 & 0 & 1 & 0
\end{array}\right] \\
& \underset{R_{2} \rightarrow R_{2}-2 R_{3}}{\sim}\left[\begin{array}{rrr|r}
1 & -1 & -2 & -3 \\
0 & 1 & 0 & 2 \\
0 & 0 & 1 & 0
\end{array}\right] \underset{R_{1} \rightarrow R_{1}+2 R_{3}}{\sim}\left[\begin{array}{rrr|r}
1 & -1 & 0 & -3 \\
0 & 1 & 0 & 2 \\
0 & 0 & 1 & 0
\end{array}\right] \underset{R_{1} \rightarrow R_{1}+R_{2}}{\sim}\left[\begin{array}{rrr|r}
1 & 0 & 0 & -1 \\
0 & 1 & 0 & 2 \\
0 & 0 & 1 & 0
\end{array}\right] .
\end{aligned}
$$

Thus the reduced row-echelon form of the matrix from part (a) is

$$
\left[\begin{array}{lll|r}
1 & 0 & 0 & -1 \\
0 & 1 & 0 & 2 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

5.

Question:
Consider the system of linear equations $A \boldsymbol{x}=\boldsymbol{b}$, where $\boldsymbol{x}=\left[x_{1}, x_{2}, x_{3}, x_{4}\right]^{T}, \boldsymbol{b} \in \mathbb{R}^{2}$, and $A \in \mathbb{R}^{2 \times 4}$. It is given that the reduced row-echelon form of the augmented matrix $[A \mid \boldsymbol{b}]$ is the matrix

$$
\left[\begin{array}{rrrr|r}
1 & 3 & 0 & -3 & 9 \\
0 & 0 & 1 & 7 & -4
\end{array}\right]
$$

Find the general solution of the system $A \boldsymbol{x}=\boldsymbol{b}$ writing your final answer in vectorial form.
Marking:
3 marks
Solution:
From the first equation we find that $x_{1}=9-3 x_{2}+3 x_{4}$. From the second equation we find that $x_{3}=-4-7 x_{4}$. The variables x_{2} and x_{4} are free variables. The vectorial form of the general solution of the system $A \boldsymbol{x}=\boldsymbol{b}$ is

$$
\boldsymbol{x}=\left[\begin{array}{c}
9-3 x_{2}+3 x_{4} \\
x_{2} \\
-4-7 x_{4} \\
x_{4}
\end{array}\right]
$$

6.

Question:
Let A denote the matrix:

$$
\left[\begin{array}{rrr}
2 & 1 & 0 \\
0 & 1 & 0 \\
0 & -3 & 1
\end{array}\right]
$$

(a) Compute A^{-1}, the inverse matrix of A. (Give your answer in the form of a single 3×3 matrix.)
(b) Based on the elementary row operations that you used to answer the part (a), express the matrix A as a product of elementary matrices.

Marking:
(a) - 4 marks
(b) -2 marks

Solution:
(a) We form the augmented matrix $[A \mid I]$ and transform the left half of the augmented matrix to the reduced row-echelon form by elementary row operations. One possible sequence of such elementary row operations is

$$
\begin{array}{r}
{\left[\begin{array}{rrr|rrr}
2 & 1 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & -3 & 1 & 0 & 0 & 1
\end{array}\right] \underset{R_{1} \rightarrow R_{1}-R_{2}}{\sim}\left[\begin{array}{rrr|rrr}
2 & 0 & 0 & 1 & -1 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & -3 & 1 & 0 & 0 & 1
\end{array}\right] \underset{R_{1} \rightarrow \frac{1}{2} R_{1}}{\sim}\left[\begin{array}{rrr|rrr}
1 & 0 & 0 & \frac{1}{2} & -\frac{1}{2} & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & -3 & 1 & 0 & 0 & 1
\end{array}\right]} \\
\underset{R_{3} \rightarrow R_{3}+3 R_{2}}{\sim}
\end{array}\left[\begin{array}{rrr|rrr}
1 & 0 & 0 & \frac{1}{2} & -\frac{1}{2} & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 3 & 1
\end{array}\right] .
$$

Therefore

$$
A^{-1}=\left[\begin{array}{rrr}
\frac{1}{2} & -\frac{1}{2} & 0 \\
0 & 1 & 0 \\
0 & 3 & 1
\end{array}\right]
$$

(b) Let $\rho_{i}(i=1, \ldots, k)$ be the elementary row operations used in part (a). In our solution we have $k=3$, but there may be more elementary row operations in other solutions. Let $E_{i}=p_{i}(I)$ be the elementary matrix corresponding to $\rho_{i}(i=1, \ldots, k)$. We have $I=E_{k} E_{k-1} \ldots E_{2} E_{1} A$ and $A=E_{1}^{-1} E_{2}^{-1} \ldots E_{k}^{-1}$.
In our solution we have

$$
\begin{aligned}
\rho_{1} & =R_{1} \rightarrow R_{1}-R_{2} \\
\rho_{2} & =R_{1} \rightarrow \frac{1}{2} R_{1} \\
\rho_{3} & =R_{3} \rightarrow R_{3}+3 R_{2} .
\end{aligned}
$$

By applying the rules for computing inverses of elementary matrices we find

$$
E_{1}^{-1}=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], \quad E_{2}^{-1}=\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], \quad E_{3}^{-1}=\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -3 & 1
\end{array}\right]
$$

Therefore one way of expressing A as a product of elementary matrices is

$$
A=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -3 & 1
\end{array}\right]
$$

7.

Question:
(a) Let $V=\{[3 x-y,-x+y, 2 x]: x, y \in \mathbb{R}\}$ be the set of all vectors $[3 x-y,-x+y, 2 x]$ where x, y are arbitrary real numbers. Decide whether V is a subspace of \mathbb{R}^{3}. Give a reason for your answer.
(b) Let $W=\{[-2 x+y, y, 1, x-y]: x, y \in \mathbb{R}\}$ be the set of all vectors $[-2 x+y, y, 1, x-y]$ where x, y are arbitrary real numbers. Decide whether W is a subspace of \mathbb{R}^{4}. Give a reason for your answer.

Marking:
(a) - 2 marks
(b) - 2 marks

Solution:

(a)

Answer: The set V is a subspace of \mathbb{R}^{3}.
Proof: Any of the following two arguments can be used:

1. $V=\{x[3,-1,2]+y[-1,1,0]: x, y \in \mathbb{R}\}=\operatorname{sp}([3,-1,2],[-1,1,0])$. Therefore V is a subspace of \mathbb{R}^{3} by the subspace property of a span (Theorem 1.14).
2. Verify that V is a non-empty subset of \mathbb{R}^{3} closed under vector addition and also under scalar multiplication (Definition 1.16).
It is clear that V is a non-empty subset of \mathbb{R}^{3}.
Closure under vector addition: Let $\boldsymbol{u}, \boldsymbol{v} \in V$. (Remark: A common mistake was to take $\boldsymbol{u}=\boldsymbol{v}$. We must however prove the closure property for an arbitrary $\boldsymbol{u} \in V$ and an arbitrary $\boldsymbol{v} \in V$.) Denote $\boldsymbol{u}=\left[3 x_{u}-y_{u},-x_{u}+y_{u}, 2 x_{u}\right], \boldsymbol{v}=\left[3 x_{v}-y_{v},-x_{v}+y_{v}, 2 x_{v}\right]$, where $x_{u}, y_{u}, x_{v}, y_{v}$ are some real numbers. Then $\boldsymbol{u}+\boldsymbol{v}=\left[3\left(x_{u}+x_{v}\right)-\left(y_{u}+y_{v}\right),-\left(x_{u}+x_{v}\right)+\left(y_{u}+y_{v}\right), 2\left(x_{u}+x_{v}\right)\right]$ $=\left[3 x_{s}-y_{s},-x_{s}+y_{s}, 2 x_{s}\right]$ where x_{s} and y_{s} are the real numbers defined by $x_{s}=x_{u}+x_{v}$ and $y_{s}=y_{u}+y_{v}$. Therefore $\boldsymbol{u}+\boldsymbol{v} \in V$.
Closure under scalar multiplication: Let $r \in \mathbb{R}$ and $\boldsymbol{v} \in V$. Denote $\boldsymbol{v}=\left[3 x_{v}-y_{v},-x_{v}+y_{v}, 2 x_{v}\right]$, where x_{v} and y_{v} are some real numbers. Then $r \boldsymbol{v}=\left[3 r x_{v}-r y_{v},-r x_{v}+r y_{v}, 2 r x_{v}\right]=\left[3 x_{t}-y_{t},-x_{t}+y_{t}, 2 x_{t}\right]$ where x_{t} and y_{t} are the real numbers defined by $x_{t}=r x_{v}$ and $y_{t}=r y_{v}$. Therefore $r \boldsymbol{v} \in V$.
(b)

Answer: The set W is not a subspace of \mathbb{R}^{4}.
Proof: Any of the following three arguments can be used:

1. The set W does not contain the zero vector, but any subspace of \mathbb{R}^{n} contains the zero vector $0=[0,0, \ldots, 0]$.
2. The set W is not closed under vector addition: Let $\boldsymbol{u}, \boldsymbol{v} \in W$. The third coordinate of the vector sum $\boldsymbol{u}+\boldsymbol{v}$ is equal to $1+1=2$, and so $\boldsymbol{u}+\boldsymbol{v} \notin W$.
3. The set W is not closed under scalar multiplication: Let $r \in \mathbb{R}$ and $\boldsymbol{v} \in W$. The third coordinate of the scalar multiple $r \boldsymbol{v}$ is equal to r, and so $r \boldsymbol{v} \notin W$ whenever $r \neq 1$.

8.

Question:
Given is the following system of equations:

$$
\left.\begin{array}{r}
x_{1}+2 x_{2}-4 x_{3}-3 x_{4}=0 \\
3 x_{1}+7 x_{2}-15 x_{3}-8 x_{4}=0
\end{array}\right\}(*)
$$

Let W be the set of all solutions (regarded as column vectors) to this linear system. Find a basis for W.

Marking:
2 marks for finding the general solution of the system
2 marks for expressing the general solution as a span of two vectors
1 mark for verifying that the set of two vectors is a basis for its span
5 marks total

Solution:

First we solve the system by finding the reduced row-echelon form of its augmented matrix. Note that we are dealing with a homogeneous system and therefore we do not need to explicitly compute with the vector of the right-hand sides (which will remain equal to the zero vector throughout the Gauss reduction).

$$
\left[\begin{array}{rrrr}
1 & 2 & -4 & -3 \\
3 & 7 & -15 & -8
\end{array}\right] \underset{R_{2} \rightarrow R_{2}-3 R_{1}}{\sim}\left[\begin{array}{rrrr}
1 & 2 & -4 & -3 \\
0 & 1 & -3 & 1
\end{array}\right] \underset{R_{1} \rightarrow \underset{R_{1}-2 R_{2}}{\sim}}{\sim}\left[\begin{array}{rrrr}
1 & 0 & 2 & -5 \\
0 & 1 & -3 & 1
\end{array}\right]
$$

Thus the general solution to the system $\left(^{*}\right)$ is

$$
\boldsymbol{x}=\left[\begin{array}{c}
-2 x_{3}+5 x_{4} \\
3 x_{3}-x_{4} \\
x_{3} \\
x_{4}
\end{array}\right]=x_{3}\left[\begin{array}{c}
-2 \\
3 \\
1 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{c}
5 \\
-1 \\
0 \\
1
\end{array}\right],
$$

where x_{3} and x_{4} are free variables and can assume any real values. Therefore the set of solutions to the system $\left(^{*}\right)$ is equal to the span

$$
\mathrm{sp}\left(\left[\begin{array}{c}
-2 \\
3 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
5 \\
-1 \\
0 \\
1
\end{array}\right]\right)
$$

Let $\boldsymbol{w}_{1}=[-2,3,1,0]^{T}, \boldsymbol{w}_{2}=[5,-1,0,1]^{T}$. Let $\boldsymbol{x}=\left[x_{1}, x_{2}, x_{3}, x_{4}\right]^{T}$ be a solution to $\left(^{*}\right)$, thus $\boldsymbol{x} \in \operatorname{sp}\left(\boldsymbol{w}_{1}, \boldsymbol{w}_{2}\right)$. Suppose that $\boldsymbol{x}=c_{1} \boldsymbol{w}_{1}+c_{2} \boldsymbol{w}_{2}$. By comparing the coordinates on both sides we conclude that $c_{1}=x_{3}, c_{2}=x_{4}$. In other words, any solution \boldsymbol{x} is expressible uniquely as a linear combination of $\boldsymbol{w}_{1}, \boldsymbol{w}_{2}$. Therefore the set $\left\{\boldsymbol{w}_{1}, \boldsymbol{w}_{2}\right\}$ is a basis for the set of all solutions to the system (*).

9.

Question:
Determine whether the set of vectors $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}\right\}$ is a basis for the subspace of \mathbb{R}^{4} spanned by this set, where

$$
\boldsymbol{v}_{1}=[2,1,-3,4], \boldsymbol{v}_{2}=[1,-1,0,5], \boldsymbol{v}_{3}=[1,5,-6,-7] .
$$

Give a reason for your answer.
Marking:
3 marks for forming the 4×3 matrix and carrying out the Gauss reduction to the point (at least)
when it is clear that there is a column without a pivot
2 marks for explaining why this calculation proves that $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}\right\}$ is not a basis for $\operatorname{sp}\left(\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}\right)$.
5 marks total
Solution:
By Theorem 1.15, $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}\right\}$ is a basis for $\operatorname{sp}\left(\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}\right)$ iff, for any real numbers r_{1}, r_{2}, r_{3},

$$
\begin{equation*}
r_{1} \boldsymbol{v}_{1}+r_{2} \boldsymbol{v}_{2}+r_{3} \boldsymbol{v}_{3}=\mathbf{0} \tag{*}
\end{equation*}
$$

implies $r_{1}=r_{2}=r_{3}=0$. The equation $\left(^{*}\right)$ written in the matrix notation has the form

$$
\left[\begin{array}{ccc}
2 & 1 & 1 \tag{**}\\
1 & -1 & 5 \\
-3 & 0 & -6 \\
4 & 5 & -7
\end{array}\right]\left[\begin{array}{l}
r_{1} \\
r_{2} \\
r_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

We use the elementary row operations to reduce the coefficient matrix of $\left({ }^{* *}\right)$ to the row-echelon form.

$$
\begin{gathered}
{\left[\begin{array}{ccc}
2 & 1 & 1 \\
1 & -1 & 5 \\
-3 & 0 & -6 \\
4 & 5 & -7
\end{array}\right] \underset{R_{1} \leftrightarrow R_{2}}{\sim}\left[\begin{array}{ccc}
1 & -1 & 5 \\
2 & 1 & 1 \\
-3 & 0 & -6 \\
4 & 5 & -7
\end{array}\right]} \\
R_{2} \rightarrow R_{2}-2 R_{1}, R_{3} \rightarrow R_{3}+3 R_{1}, R_{4} \rightarrow R_{4}-4 R_{1}
\end{gathered}\left[\begin{array}{ccc}
1 & -1 & 5 \\
0 & 3 & -9 \\
0 & -3 & 9 \\
0 & 9 & -27
\end{array}\right]
$$

At this point we see that there is no pivot in the third column, hence the variable r_{3} is free and the linear system $\left({ }^{* *}\right)$ has non-trivial solutions. Therefore the zero vector 0 can be expressed as non-trivial linear combinations $\left(^{*}\right)$ of the vectors $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}$. Therefore the set $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}\right\}$ is not a basis for $\operatorname{sp}\left(\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}\right)$.

