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Part A (Problem 1): True or False?

Instructions: Indicate whether the following statements are true or false. No explanation
required.

[mark]

1. (i) LetS= {\71,\72,...,\7k} be a set of vectors in R™. If S is independent, then each

vector in R" can be expressed uniquely as a linear combination of vectors in S. [1]

(a) true (b) false

(ii) If H is a row-echelon form of matrix A, then the nonzero column vectors in
H form a basis for the column space of A . [1]

(a) true (b) false

(iii) The set Q of all rational numbers forms an infinite-dimensional vector space.
[1]
(a) true (b) false

Part B (Problems 2 to 6): Short Answer

Instructions: Give a short answer/solution to each of the following questions/problems. No
detailed explanation is required. It is assumed that any required work can be carried-out in your
head, so it is not necessary to show your work. Questions having very short answers are
provided with an answer box — please write the answer in this box if so provided.

[mark]
2. Suppose an m by n matrix A has a row space of dimension p.
(i) What is the dimension of A's column space? [2]
answer
(i) What is the dimension of A's nullspace? [2]
answer

(Signature)
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3. Let A be the following matrix:

0& ray r,a - I8 rnay O

H& nd ha, e faa o

A= EaS rlaS r2a3 T rn—la’& rnas S

D . . . . . D

?‘m—l Mn1 M8n1 o Ma8na rnam—lg

O8n N, &, - lady L&, 0

where a---a, and r;---r, are non-zero real numbers.
(i) Whatis the rank of A ? [2]
answer

(i) Write down a basis for the row space of A. [2]
(iii) Write down a basis for the column space of A. [2]

4. If you consider differentiation to be a linear transformation T, whatis T's
nullspace? [3]

5. (i) Give an example of a vector space V which is not finitely generated. [3]
[You should read parts (ii) and (iii) before answering this.]

(i) Let W be a subspace of V, where V is given in (i). Give an example of such
a subspace which is itself not finitely generated. [3]

(iii) Let W' be a 3-dimensional subspace of V, where V is givenin (i). Give an
example of such a subspace. [3]

(Signature)
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6. () Whatis the determinant of the matrix A given in problem #3? [2]

answer
(i) What is the determinant of the following matrix? [3]

By &, &, &, a0
20 & &a & A

00 0 &, a, ae,s%

0
0 0 0 &, asq

HO 0 0 0 aH

answer

Part C (Problems 7 to 9): Show All Your Work

Instructions: Work out the following problems, showing all your work, and place the final
answer in the answer box . Part marks will be awarded even if the final answer is wrong.

7. Evaluate the following determinant, where a to n and p are non-zero real

numbers. [7]
n | 0 j c
b 00 0O
h i a g p
k e 00O
m f 0 d O
Answer

(Signature)
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8. Let M, be the vector space of 2 by 2 matrices of real numbers. and let

100 -1pd -100 1@

‘E& oHfe oBH 3R 1H

2
form a basis for M, . What is % 4 E in the basis B? [16]

answer

(Signature)



Math 232 Mid-Term 2, Spring 2000 Page 6

9. Let F be the vector space of functions f:00» O ,let V be the subspace of F
spanned by the basis B =(sin(x),cos(x),1) , and let V' be the subspace of F spanned by

the basis B' = (ex,e'x) . Define a linear transformation T:V - V' as follows:

T(sin(x) = -2
2

T(cos(x)) = & +2e

TDH=0
(i) What is the matrix representation A of T relative to B, B'? [8]

answer

(ii) Whatis the kernel of T ? [2]
(iii) Is the transformation invertible ? Explain. [2]

(Signature)
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Part D (Problem 10): Proof

10. Let A and C be matrices of real numbers, such that the matrix product AC is
defined. Prove that the column space of AC is contained in the column space of A .

[10]
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