SIMON FRASER UNIVERSITY DEPARTMENT OF MATHEMATICS AND STATISTICS

Sample Second Midterm

MATH 232

July, 1998, 55 minutes

Name:			(please print)
	family name	given name	•
Signature:			

INSTRUCTIONS

- 1. Write your name above in block letters and sign below your name.
- 2. Record your answers on the answer pages found immediately below this cover sheet.
- 3. No calculators or other computing devices may be used.
- 4. This exam has 9 questions on 7 pages which follow the answer pages please check to make sure your exam is complete.
- 5. Ask for clarification if you cannot understand the question or there appears to be an error.
- 6. If the space provided for rough work is insufficient you may use the back of the previous page.

Answer Page 1

QUESTION	Answer	Max	Score
1		4	
2		3	
3		3	
4	Yes, S is a subspace No, S is not a subspace Brief reasons:	4	
5	(a) (b)	2 3	

Subtotal	

Answer Page 2

QUESTION	Answer	Max	SCORE
6	(a) (b)	2	
		J	
7	(a)	3	
	(b)	3	
8		5	
9		5	

~	
CIDTOTAL	
SUBTOTAL	
OCDICIAL	

Exam total	Ехам	TOTAL	
------------	------	-------	--

[4] 1. Find a basis for the subspace of \mathbb{R}^4 spanned by the vectors

$$[-2,1,1,3],\ [3,-2,2,-1],\ [1,-1,3,2],\ [-1,0,4,5]\,.$$

ROUGH WORK

Enter your answer on the answer sheets following the cover page

[3] 2. Let $F:\mathbb{R}^2\to\mathbb{R}^3$ be a linear transformation such that T([1,3])=[2,1,-1] and T([-2,1])=[0,1,1]. Find T([1,1]).

ROUGH WORK

[3] 3. Write down three axioms about scalar multiplication which are true in any vector space.

ROUGH WORK

Enter your answer on the answer sheets following the cover page

[4] 4. Let V denote the vector space $\mathbb{R}^{2\times 2}$ of 2×2 matrices over \mathbb{R} with the usual addition and scalar multiplication.

Let S denote the set

$$\left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in V : a+b+c+d=0 \right\}.$$

Is S a subspace of V?

Justify your answer briefly.

ROUGH WORK

- **5.** Let V denote the space of all polynomials over $\mathbb R$ with degree at most 3.
 - Let $\mathcal B$ denote the ordered basis $\langle 1+x,\, -1+x,\, x^2+x,\, -x^2+x^3 \rangle$ of V.

Let \mathcal{B}' denote the standard basis of \mathbb{R}^2 .

Let $F:V \to \mathbb{R}^2$ be the linear transformation defined by

$$F(a_0 + a_1x + a_2x^2 + a_3x^3) = [a_3 - a_1, a_0 + a_2].$$

[2] (a) Find the coordinate vector $(1+x^3)_{\mathcal{B}}$ of $1+x^3$ with respect to \mathcal{B} .

ROUGH WORK

Enter your answer on the answer sheets following the cover page

[3] (b) Write down the matrix representing F with respect to \mathcal{B} , \mathcal{B}' .

ROUGH WORK

- **6.** Let $a=(a_1,a_2)$, $b=(b_1,b_2)$, $c=(c_1,c_2)$ be points in the cartesian plane and O denote the origin.
- [2] (a) Write down a formula which expresses the area of the parallelogram O(a) + bb in terms of a certain determinant.

ROUGH WORK

Enter your answer on the answer sheets following the cover page

[3] (b) Write down a formula for the area of the triangle a b c in terms of a, b, c.

ROUGH WORK

[3] 7. (a) Evaluate the determinant:

$$\begin{array}{ccccc} 0 & 2 & 0 & 0 \\ 0 & 3 & -2 & 4 \\ 1 & -2 & 1 & 5 \\ 0 & 6 & 2 & 3 \end{array}$$

ROUGH WORK

Enter your answer on the answer sheets following the cover page

[3] (b) Evaluate the determinant:

ROUGH WORK

[5] 8. It is given that the eigenvalues of the matrix

$$A = \begin{bmatrix} i & 1 & i \\ 1 & i & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

are 0, 2 + i, and (-1) + i.

Find an invertible matrix $C\in\mathbb{C}^{3\times3}$ such that $C^{-1}AC$ is a diagonal matrix.

ROUGH WORK

[5] 9. Let A denote the matrix

$$\begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$$

Find the eigenvalues and the corresponding eigenspaces of ${\cal A}.$

ROUGH WORK	(