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1. DO NOT OPEN THIS BOOKLET UNTIL TOLD TO DO SO.
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previous page.
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[3] 1. Let F : R2 ! R
4 be a linear transformation which

satis�es

F ([�1; 3]) = [�4; 6; 2; 0]; F ([2;�1]) = [3;�2; 1; 5]

Compute the standard matrix representation

of F .

ANSWER

ROUGH WORK

[6] 2. On the separate sheet circulated with the exam you will �nd the de�nition of a vector
space over R.

Let V be a vector space over R.

From the axioms listed on the sheet, prove that, for all vectors a, b, and c in V ,

b+ a = c+ a implies b = c :

ANSWER
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[3] 3. (a) Let V be a vector space over R. Let W be a subset of V .

State necessary and su�cient conditions for W to be a subspace of V .

ANSWER

[4] (b) Let V be the vector space RR of all functions from R into R. Let W denote the set

�
f 2 RR : (8x; y 2 R) [xy > 0 implies f(x) = f(y)]

	
:

Decide whether W is a subspace of V and justify your answer.

ANSWER
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[2] 4. (a) Let V be a vector space over R, and v be a vector in V .

Let B = hb1; : : : ; bni be an ordered basis of V .

De�ne the coordinate vector vB of v with respect to B.

ANSWER

[3] (b) Let B denote the ordered basis h[�1; 1; 2]; [1;�1; 0]; [0; 1; 0]i for R3.

Compute the coordinate vector of [1; 0; 0] with

respect to B.

ANSWER

ROUGH WORK
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5. Let V be the subspace of R[x] consisting of all polynomials of degree at most 1, and W
be the subspace of R[x] consisting of all polynomials of degree at most 2.

Let B, C denote the ordered bases

hx; 1i; hx2 + x+ 1; x+ 1; 1i

for V , W respectively.

Let T : V !W denote the linear transformation de�ned by T (p) = (x+ 1)p.

[5] (a) Compute the matrix which represents T with

respect to B, C.

ANSWER

[2] (b) Is there a linear transformation T 0 : W ! V such that T 0 � T is the identity

on V ? Justify your answer.

ANSWER

ROUGH WORK

(continue on back of page 3 if you need more room)
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[2] 6. (a) Let b, c be vectors in R3.

Explain the relationship of the vector b�c to the vectors b, c in geometrical

terms.

ANSWER

[2] (b) Find the area of the triangle whose vertices

are the points (1; 1; 3), (0; 1; 0), (1; 1; 0) in R3.

ANSWER

ROUGH WORK
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[2] 7. (a) Evaluate the determinant
�
�
�
�
�
�

a+ 1 a+ 4 a+ 7

a+ 2 a+ 5 a+ 8

a+ 4 a+ 6 a+ 9

�
�
�
�
�
�

ANSWER

ROUGH WORK

[2] (b) Let A be an n� n matrix.

De�ne the matrix adj(A) called the adjoint of A.

State the most important property of the adjoint of A.

ANSWER

De�nition

Most important property
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[2] 8. (a) Express the following complex number in the

form a+ ib, where a; b 2 R and i2 = �1

(2� i)(1 + i)

1 + 2i
:

ANSWER

[2] (b) Compute r; � 2 R, such that r > 0,

0 � � < 2�, and

2� i = r ei� :

ANSWER

r =

� =

ROUGH WORK
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