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Part A (Problem 1): True or False?

Instructions: Indicate whether the following statements are true or false. No explanation
required.

1. (i) LetS= {\71,\72,...,\7k} be a set of vectors in R™ If S is independent, then each

vector in R" can be expressed uniquely as a linear combination of vectors in S. [1]

(b) false: S must also span RIin order to be a
basis for K.

(ii) If H is a row-echelon form of matrix A, then the nonzero column vectors in
H form a basis for the column space of A . [1]

(b) false: It is the column vectors of A
corresponding to the nonzero column vectors in H
which form a basis for the column space of A.

(iii) The set Q of all rational numbers forms an infinite-dimensional vector space.
[1]
(b) false: Q is not closed under scalar
multiplication, if you happen to multiply by an

irrational number.
Part B (Problems 2 to 6): Short Answer
Instructions: Give a short answer/solution to each of the following questions/problems. No
detailed explanation is required. It is assumed that any required work can be carried-out in your
head, so it is not necessary to show your work. Questions having very short answers are

provided with an answer box — please write the answer in this box if so provided.

2. Suppose an m by n matrix A has a row space of dimension p.

(i) What is the dimension of A's column space? P [2]
answer

(i) What is the dimension of A's nullspace? n-p [2]
answer
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3. Let A be the following matrix:

&  nha  La & a0
Ha& na A S
a, gy I M Tads U
A=, ; 0
D . . . . . D
%‘m—l M8mg (8ng 0 Th8ng a8 E
0%, N,  Ra, - a8y 1a, [
where a---a, and r,---r, are non-zero real numbers.
(i) Whatis therank of A? 1
answer

(i) Write down a basis for the row space of A.

Brow = ([1' FTLPTAR PD rn])

(iii) Write down a basis for the column space of A.

By = (22,85, 80108, )

4. If you consider differentiation to be a linear transformation T, what is T's
nullspace?

The space of all constant functions.

5. () Give an example of a vector space V which is not finitely generated.
[You should read parts (ii) and (iii) before answering this.]

eg. 1: The space P of all polynomials in x.
eg.2: The space F of all functions f:0- O
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(i) Let W be a subspace of V, where V is givenin (i). Give an example of such

a subspace which is itself not finitely generated.

eg. 1: The space P, of all polynomials composed of even powers of x.

eg. 2: The space F, of all even functions f:0~ O where f(-x)= f(x)

[3]

(iii) Let W' be a 3-dimensional subspace of V, where V is givenin (i). Give an

example of such a subspace.

eg. 1: W' = sp(L,x,%%)
eg.2: W' = sp(1,cos(x),e)

[3]
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6. (i) Whatis the determinant of the matrix A given in problem #3? [2]
Oifntl=m
otherwise
undefined
answer
(i) What is the determinant of the following matrix? [3]

By &, A, Ay Gl
0 &, & B, &ep

BO 0 a; a, as,s%
00 0 0 a, asq

HO 0 0 0 aH

Answer:
al,laZ,ZaS,3a4,4aS,5

Part C (Problems 7 to 9): Show All Your Work

Instructions: Work out the following problems, showing all your work, and place the final
answer in the answer box . Part marks will be awarded even if the final answer is wrong.

7. Evaluate the following determinant, where 2 to n and p are non-zero real

numbers. [7]

n I 0 j c .

n | j c _
b 000 0 | | ¢
h i a —d? % %9 e 0 o=-and® Y= -ancd
Ceoo0q OO T T I dTTE

m f d O
m f 0 d O
Answer:

-abcde
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8. Let M, be the vector space of 2 by 2 matrices of real numbers. and let

100 -1pd -100 1M

'EEJ, oH ofFk 3BR 1H

-2
form a basis for M, . What is % 4 E in the basis B? [16]

Let B= (51, b,,b.,b 4) , where the b ; represent the above matrices.
Let vl 20
e =
% 44
Let B' = % gﬁg éﬁg 8%% O% which is the usual basis for M, .

We can express the basis vectors b ; inthe B' basis as follows:
(6), =[0410, , (5.), =[0-1.0.0), , (5), =[1-104,., (5.), =[010],
and the vector V inthe B’ basis is: (\7)8, =[1,-2,34],.

We wish to solve r,b, +r,b, +rjo, +r,b, =V. This can be done in the B’ basis
by forming the augmented matrix and performing Gauss-Jordan reduction:

® 0 1 0|10 1 0 0 03[ 1 0 0 0|30
0 0 0
-1 -1 1]-2 -1 -1 1]-2 -1 -1 1|-5
% DDQ]][;-L% DDMRQ"%) a
10 0 0[30%% ® 0 1 010 "9 ® 0 1 0|1C
O o 3 1|4H O o 3 1|4H W o o 1| 1H
1 0 0 0] 3(Q 1 0 0 0|30
0 0
-1 0 1|-4 -1 0 0|-5
DRQ*E) DDFD]]:DRQ"%) [l
;R @ o0 10|10 R @ 0 10|10
H o o 1| 1H o o o 1] 1H
1 0 0 0]30
0
100|5
0 0 0 0(v). =[35,
% D 0 1 0|10 (Ve =[3521,
B o o 1|14
[3,5,1,1],
answer
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9. Let F be the vector space of functions f:0- O ,let V be the subspace of F

spanned by the basis B =(sin(x),cos(x),1) , and let V' be the subspace of F spanned by

the basis B’ = (ex,e'x) . Define a linear transformation T:V - V' as follows:

— e X

2
e‘+e

)= 2

T(sin(x)) = ¢

—X

T(cos(x)
TQ=0

(i) What is the matrix representation A of T relative to B, B'? [8]

In the B' basis, we have:

o

and therefore: A = D2]_

H2

NIFRN |-
o
mooo

(ii) What is the kernel of T ? [2]

ker(T) = sp(1)

(iii) Is the transformation invertible ? Explain. [2]

No, for any of the following reasons:
e A is not a square matrix and therefore doesn't
have an inverse.
¢ The kernel of T is not zero-dimensional.
¢ V and V' have different dimensions and
therefore the transformation is not 1-to-1.
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Part D (Problem 10): Proof

10. Let A and C be matrices of real numbers, such that the matrix product AC is
defined. Prove that the column space of AC is contained in the column space of A .

[10]

Let C be an m x n matrix. By definition, every vector
V in the column space of AC is a linear combination of
columns of AC and therefore it is of the form V=(AC)X

for some XoON. However, (AC)x=A(CX) by the

associative law of matrix multiplication, so V=AW where
W=CX . Therefore, V can be expressed as a linear
combination of the column vectors of A . In other words,
V is in the column space of A . Since V can be any
vector in the column space of AC, this shows that the

column space of AC is contained in the column space of
A.

QED
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