Question	Answer	Max	Score
1	(a) 3 (b) $\{[1,0,0,1,2],[0,1,0,2,2],[0,0,1,1,1]\}$ (c) $\{[2,-3,6,-1,9],[1,-4,1,0,2],[-1,2,1,-1,2]\}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \end{aligned}$	
2	(a) $\quad F([1,0])=\left[\frac{1}{2},-1\right]$ and $F([0,1])=\left[\frac{3}{2}, 0\right]$ (b) $\left[\begin{array}{rr}1 / 2 & 3 / 2 \\ -1 & 0\end{array}\right]$	$\begin{gathered} 3 \\ 2 \end{gathered}$	
3	$\text { Yes, } S \text { is a subspace of } \mathbb{R}[x]$ \square Brief reasons: The set S is not closed under vector addition because $1+x$ and $-x$ are in S but $(1+x)+(-x)=1 \notin S$	4	
4	(a) $1_{\mathcal{B}}=[-1,1,1,0]$ (b) $\left[\begin{array}{rrrr}0 & 0 & 0 & 1 \\ 0 & -1 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0\end{array}\right]$	2 4	
5	(a) $\frac{1}{2}\left\|\left\{\left\|\begin{array}{ll}b_{1} & b_{2} \\ c_{1} & c_{2}\end{array}\right\|+\left\|\begin{array}{ll}c_{1} & c_{2} \\ a_{1} & a_{2}\end{array}\right\|+\left\|\begin{array}{ll}a_{1} & a_{2} \\ b_{1} & b_{2}\end{array}\right\|\right\}\right\|$ (b) The points $0, \boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}$ are coplanar in \mathbb{R}^{3}.	4 3	
6	(a) 6 (b) 84	3 3	

Midterm 2 Answer Key (continued)

Question	Answer	Max	Score
$\mathbf{7}$	(a) A in $\mathbb{R}^{n \times n}$ is diagonalizable over \mathbb{R} if and only the sum of the dimensions of the real eigenspaces of A is n. (b) The given matrix has eigenvalues ± 1. Each eigenspace has dimension 1. So, by (a), matrix is not diagonalizable.	3	3
$\mathbf{8}$	$C=\left[\begin{array}{rrr}1 & 1-i & 1+i \\ 0 & 1+2 i & 1-2 i \\ 1 & -1 & -1\end{array}\right]$	6	

