QUESTION	Answer	MAX	Score
1	(a) 3	2	
	(b) $\{[1,0,0,1,2], [0,1,0,2,2], [0,0,1,1,1]\}$	2	
	(c) $\{[2, -3, 6, -1, 9], [1, -4, 1, 0, 2], [-1, 2, 1, -1, 2]\}$	2	
2	(a) $F([1,0]) = \begin{bmatrix} \frac{1}{2}, -1 \end{bmatrix}$ and $F([0,1]) = \begin{bmatrix} \frac{3}{2}, 0 \end{bmatrix}$ (b) $\begin{bmatrix} \frac{1/2}{-1} & \frac{3}{2} \\ -1 & 0 \end{bmatrix}$	3	
3	Yes, S is a subspace of $\mathbb{R}[x]$ No, S is not a subspace X Brief reasons: The set S is not closed under vector addition because $1 + x$ and $-x$ are in S but $(1 + x) + (-x) = 1 \notin S$.	4	
4	(a) $1_{\mathcal{B}} = [-1, 1, 1, 0]$ (b) $\begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & -1 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$	2 4	
5	(a) $\frac{1}{2} \left \left\{ \begin{vmatrix} b_1 & b_2 \\ c_1 & c_2 \end{vmatrix} + \begin{vmatrix} c_1 & c_2 \\ a_1 & a_2 \end{vmatrix} + \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} \right\} \right $ (b) The points 0, \boldsymbol{a} , \boldsymbol{b} , \boldsymbol{c} are coplanar in \mathbb{R}^3 .	4 3	
6	(a) 6 (b) 84	3 3	

MIDTERM 2 ANSWER KEY (CONTINUED)

QUESTION	Answer	MAX	Score
7	(a) A in $\mathbb{R}^{n \times n}$ is diagonalizable over \mathbb{R} if and only the sum of the dimensions of the real eigenspaces of A is n .	3	
	(b) The given matrix has eigenvalues ± 1 . Each eigenspace has dimension 1. So, by (a), matrix is not diagonalizable.	3	
8	$C = \begin{bmatrix} 1 & 1-i & 1+i \\ 0 & 1+2i & 1-2i \\ 1 & -1 & -1 \end{bmatrix}$	6	