MATH 232 Key for sample Midterm 2

QUESTION	Answer	MAX	SCORE
1	Many possible correct answers. For example, any set consisting of two of the four given vectors.	4	
2	T([1,1]) = (1/7)[6,1,-5]	3	
3	Any three of S1. $r(u + v) = ru + rv$ S2. $(r + s)u = ru + su$ S3. $r(su) = (rs)u$ S4. $1u = u$	3	
	Yes, S is a subspace X No, S is not a subspace		
4	Brief reasons: 1. S is not empty since $O \in S$. 2. Suppose that $A_i = \begin{bmatrix} a_i & b_i \\ c_i & d_i \end{bmatrix}$ is in S for $i = 1, 2$. Then $a_i + b_i + c_i + d_i = 0$ for $i = 1, 2$. So $(a_1 + a_2) + (b_1 + b_2) + (c_1 + c_2) + (d_1 + d_2) = 0$. Hence $A_1 + A_2$ is in S, i.e., S is closed under +. 3. Similarly, S is closed under scalar multiplication.	4	
5	(a) $[0, -1, 1, 1]$	2	
	(b) $\begin{bmatrix} -1 & -1 & -1 & 1 \\ 1 & -1 & 1 & -1 \end{bmatrix}$	3	
6	(a) $\begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix}$ (absolute value of the determinant)	2	
	(b) $(1/2) \ c - a \ $ (absolute value of the determinant)	3	
7	(a) -28	3	
	(b) 20	3	

QUESTION	Answer	MAX	Score
8	$C = \begin{bmatrix} 1 & 1+2i & 1\\ 0 & 2+i & -1\\ -1 & 3 & 0 \end{bmatrix}$	5	
9	The characteristic polynomial of A is $ \lambda I - A = \begin{vmatrix} \lambda - 1 & -2 & -2 \\ -2 & \lambda - 1 & -2 \\ -2 & -2 & \lambda - 1 \end{vmatrix} = (\lambda - 5)(\lambda + 1)^2.$ So the eigenvalues are $\lambda = 5$, and $\lambda = -1$ with algebraic multiplicity 2. The eigenspace of A belonging to 5 is $sp([1, 1, 1])$. The eigenspace of A belonging to -1 is $sp([1, -1, 0], [1, 0, -1])$.	5	