MATH 232 Key for sample Midterm 2

Question	Answer	Max	Score				
1	Many possible correct answers. For example, any set consisting of two of the four given vectors.	4					
2	$T([1,1])=(1 / 7)[6,1,-5]$	3					
3	Any three of S1. $r(\boldsymbol{u}+\boldsymbol{v})=r \boldsymbol{u}+r \boldsymbol{v}$ S2. $(r+s) \boldsymbol{u}=r \boldsymbol{u}+s \boldsymbol{u}$ S3. $r(s \boldsymbol{u})=(r s) \boldsymbol{u}$ S4. $1 \boldsymbol{u}=\boldsymbol{u}$	3					
4	\square Brief reasons: 1. S is not empty since $O \in S$. 2. Suppose that $A_{i}=\left[\begin{array}{ll}a_{i} & b_{i} \\ c_{i} & d_{i}\end{array}\right]$ is in S for $i=1,2$. Then $a_{i}+b_{i}+c_{i}+d_{i}=0$ for $i=1,2$. So $\left(a_{1}+a_{2}\right)+\left(b_{1}+b_{2}\right)+\left(c_{1}+c_{2}\right)+\left(d_{1}+d_{2}\right)=0$. Hence $A_{1}+A_{2}$ is in S, i.e., S is closed under + . 3. Similarly, S is closed under scalar multiplication.	4					
5	(a) $[0,-1,1,1]$ (b) $\left[\begin{array}{rrrr}-1 & -1 & -1 & 1 \\ 1 & -1 & 1 & -1\end{array}\right]$	2 3					
6	(a) $\quad\left\\|\begin{array}{ll}a_{1} & a_{2} \\ b_{1} & b_{2}\end{array}\right\\| \quad$ (absolute value of the determinant) (b) $\quad(1 / 2)\left\\|\begin{array}{l}b-a \\ c-a\end{array}\right\\| \quad$ (absolute value of the determinant)	2 3					
7	(a) -28 (b) $\quad 20$	3 3					

Question	Answer	Max	Score
8	$C=\left[\begin{array}{rrr}1 & 1+2 i & 1 \\ 0 & 2+i & -1 \\ -1 & 3 & 0\end{array}\right]$	5	
9	The characteristic polynomial of A is $\|\lambda I-A\|=\left\|\begin{array}{rrr} \lambda-1 & -2 & -2 \\ -2 & \lambda-1 & -2 \\ -2 & -2 & \lambda-1 \end{array}\right\|=(\lambda-5)(\lambda+1)^{2} .$ So the eigenvalues are $\lambda=5$, and $\lambda=-1$ with algebraic multiplicity 2. The eigenspace of A belonging to 5 is $\operatorname{sp}([1,1,1])$. The eigenspace of A belonging to -1 is $\operatorname{sp}([1,-1,0],[1,0,-1])$.	5	

