DEPARTMENT OF MATHEMATICS AND STATISTICS

Second Midterm Key

MATH 232 March 3, 1999

11:30 am - 12:20 pm

[3] 1. Let $F: \mathbb{R}^2 \to \mathbb{R}^4$ be a linear transformation which satisfies

$$F([-1,3]) = [-4,6,2,0], \qquad F([2,-1]) = [3,-2,1,5]$$

Compute the standard matrix representation of F.

EXPLANATION Note that

$$[1,0] = \frac{1}{5}[-1,3] + \frac{3}{5}[2,-1] \qquad [0,1] = \frac{2}{5}[-1,3] + \frac{1}{5}[2,-1]$$

Therefore, since F is linear, we have

$$F([1,0]) = \frac{1}{5}F([-1,3]) + \frac{3}{5}F([2,-1]) = [1,0,1,3]$$

$$F([0,1]) = \frac{2}{5}F([-1,3]) + \frac{1}{5}F([2,-1]) = [-1,2,1,1].$$

[6] 2. On the separate sheet circulated with the exam you will find the definition of a vector space over \mathbb{R} .

Let V be a vector space over \mathbb{R} .

From the axioms listed prove that, for all vectors a, b, and c in V,

$$oldsymbol{a}+oldsymbol{b}=oldsymbol{a}+oldsymbol{c}$$
 implies $oldsymbol{b}=oldsymbol{c}$.

ANSWER	Suppose that $oldsymbol{a}+oldsymbol{b}=oldsymbol{a}+oldsymbol{c}$. Then	
	b = 0 + b	by A3
	$=$ $(\boldsymbol{a} + (-\boldsymbol{a})) + \boldsymbol{b}$	by A4
	= (b + a) + (-a)	by A1, A2
	= (c + a) + (-a)	hypothesis
	= (a + (-a)) + c	by A1, A2
	$= 0 + \mathbf{c}$	by A4
	= c	A3 .

[3] 3. (a) Let V be a vector space over \mathbb{R} . Let W be a subset of V.

State necessary and sufficient conditions for W to be a subspace of V.

ANSWER W is a subspace of V if and only if

- 1. $W \neq \emptyset$.
- 2. W is closed under vector addition, i.e., $a + b \in W$ for all a and b in W.
- 3. W is closed under scalar multiplication, i.e., $ra \in W$ for all r in \mathbb{R} and a in W.

(b) Let V be the vector space ${}^{\mathbb{R}}\mathbb{R}$ of all functions from \mathbb{R} into $\mathbb{R}.$ Let W denote the set

 $\{f \in \mathbb{R} \mathbb{R} : (\forall x, y \in \mathbb{R}) [xy > 0 \text{ implies } f(x) = f(y)]\}$

Decide whether W is a subspace of V and justify your answer.

ANSWER Yes

We check the three conditions mentioned in (a).

- 1. $W \neq \emptyset$ because every constant function is in W.
- 2. Consider $f, g \in W$ and $x, y \in \mathbb{R}$ such that xy > 0. From the definition of W,

$$f(x) = f(y)$$
 and $g(x) = g(y)$.

Therefore

$$(f+g)(x) = f(x) + g(x) = f(y) + g(y) = (f+g)(y)$$

and so $f + g \in W$. Thus W is closed under vector addition.

3. Consider $r \in \mathbb{R}$, $f \in W$ and $x, y \in \mathbb{R}$ such that xy > 0. From the definition of W, f(x) = f(y). Therefore

$$(rf)(x) = r \cdot f(x) = r \cdot f(y) = (rf)(y)$$

and so $rf \in W$. Thus W is closed under scalar multiplication.

[4]

[2] 4. (a) Let V be a vector space over \mathbb{R} , and \boldsymbol{v} be a vector in V. Let $\mathcal{B} = \langle \boldsymbol{b}_1, \dots, \boldsymbol{b}_n \rangle$ be an ordered basis of V.

Define the coordinate vector $v_{\mathcal{B}}$ of v with respect to \mathcal{B} .

ANSWER

 $m{v}_{\mathcal{B}}$ is defined to be $[r_1,\ldots,r_n]$, where $r_1,\,\ldots,\,r_n$ are the unique real numbers satisfying

$$\boldsymbol{v}=r_1\boldsymbol{b}_1+\ldots+r_n\boldsymbol{b}_n$$

[3] (b) Let \mathcal{B} denote the ordered basis $\langle [-1, 1, 2], [1, -1, 0], [0, 1, 0] \rangle$ for \mathbb{R}^3 .

Compute the coordinate vector of [1, 0, 0] with respect to \mathcal{B} .

EXPLANATION

The required coordinate vector \boldsymbol{x} satisfies:

$$x_{1}\begin{bmatrix} -1\\ 1\\ 2 \end{bmatrix} + x_{2}\begin{bmatrix} 1\\ -1\\ 0 \end{bmatrix} + x_{3}\begin{bmatrix} 0\\ 1\\ 0 \end{bmatrix} = \begin{bmatrix} -1 & 1 & 0\\ 1 & -1 & 1\\ 2 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_{1}\\ x_{2}\\ x_{3} \end{bmatrix} = \begin{bmatrix} 1\\ 0\\ 0 \end{bmatrix}$$

This system can be solved in one's head because, looking at the third component we see that $x_1 = 0$. Then, looking at the first component, we have $x_2 = 1$. Finally, $x_3 = 1$ by inspection of the second component. 5. Let V be the subspace of $\mathbb{R}[x]$ consisting of all polynomials of degree at most 1, and W be the subspace of $\mathbb{R}[x]$ consisting of all polynomials of degree at most 2.

Let \mathcal{B}, \mathcal{C} denote the ordered bases

$$\langle x, 1 \rangle, \quad \langle x^2 + x + 1, x + 1, 1 \rangle$$

for V, W respectively.

Let $T: V \to W$ denote the linear transformation defined by T(p) = (x+1)p.

[5] (a) Compute the matrix which represents T with respect to \mathcal{B} , \mathcal{C} .

ANSWER				
	1	0		
	0	1		
	1	0		

[2] (b) Is there a linear transformation $T': W \to V$ such that $T' \circ T$ is the identity on V? Justify your answer.

ANSWER

Yes. By a theorem there is a unique linear transformation $T': W \to V$ which satisfies $T'(x^2 + x) = x$, T'(x+1) = 1, T'(1) = 0. It is clear that $T' \circ T(x) = x$ and $T' \circ T(1) = 1$. Since $T' \circ T$ agrees with id_V on a basis of $V, T' \circ T$ is the identity on V.

EXPLANATION

(a)
$$T(x) = (x+1)x = x^2 + x = 1(x^2 + x + 1) + 0(x+1) + (-1)1$$

 $T(1) = (x+1)1 = x + 1 = 0(x^2 + x + 1) + 1(x+1) + 0(1)$

[2] 6. (a) Let \boldsymbol{b} , \boldsymbol{c} be vectors in \mathbb{R}^3 .

Explain the relationship of the vector $b \times c$ to the vectors b, c in geometrical terms.

ANSWER

The norm $||b \times c||$, i.e., the length of $b \times c$ is the area of the rectangle determined by b and c.

b imes c is orthogonal to the plane determined by b and c.

 $\langle m{b},\,m{c},\,m{b} imesm{c}
angle$ is a right-handed triple of vectors.

[2] (b) Find the area of the triangle whose vertices are the points (1,1,3), (0,1,0), (1,1,0) in \mathbb{R}^3 .

ANSWER3/2

EXPLANATION

(b) Subtracting (0,1,0) from all three points translates the given triangle to the triangle (1,0,3), (0,0,0), (1,0,0), i.e., to the triangle determined by **0**, (1,0,3), and (1,0,0).

The area of the triangle $\mathbf{0}$ (1,0,3) (1,0,0) is half of the area of the parallelogram determined by (1,0,3), (1,0,0), which is

 $\|[1,0,3] \times [1,0,0]\| = \|[0,3,0]\| = 3.$

[2] 7. (a) Evaluate the determinant

 $\begin{vmatrix} a+1 & a+4 & a+7 \\ a+2 & a+5 & a+8 \\ a+4 & a+6 & a+9 \end{vmatrix}$

EXPLANATION Applying the row operations $R_3
ightarrow R_3 - R_2$, $R_2
ightarrow R_2 - R_1$, we get

 $\begin{vmatrix} a+1 & a+4 & a+7 \\ a+2 & a+5 & a+8 \\ a+4 & a+6 & a+9 \end{vmatrix} = \begin{vmatrix} a+1 & a+4 & a+7 \\ 1 & 1 & 1 \\ 2 & 1 & 1 \end{vmatrix} = \begin{vmatrix} a+1 & a+4 & 3 \\ 1 & 1 & 0 \\ 2 & 1 & 0 \end{vmatrix}$

where the second equality comes from the column operation $C_3 \rightarrow C_3 - C_2$. Expanding down column 3, gives the result.

[2] (b) Let A be an $n \times n$ matrix.

Define the matrix adj(A) called the adjoint of A. State the most important property of the adjoint of A.

ANSWER

Definition

 $\operatorname{adj}(A)$ is the $n \times n$ matrix whose (i, j)-th entry is $(-1)^{i+j} |A_{ji}|$, where A_{ji} is the (j, i)-th minor of A.

Most important property

 $A \operatorname{adj}(A) = \operatorname{adj}(A) A = |A|I.$

[2] 8. (a) Express the following complex number in the form a + ib, where $a, b \in \mathbb{R}$ and $i^2 = -1$

$$\frac{(2-i)(1+i)}{1+2i}.$$

[2] (b) Compute
$$r, \theta \in \mathbb{R}$$
, such that $r > 0$,
 $0 \le \theta < 2\pi$, and

 $2 - i = r e^{i\theta}.$

ANSWER

$$r = \sqrt{5}$$

 $\theta = 2\pi - \arctan(1/2)$

ROUGH WORK