DEPARTMENT OF MATHEMATICS AND STATISTICS Second Midterm Key MATH 232
 March 3, 1999
 11:30 am - 12:20 pm

[3] 1. Let $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{4}$ be a linear transformation which satisfies
$F([-1,3])=[-4,6,2,0], \quad F([2,-1])=[3,-2,1,5]$
Compute the standard matrix representation of F.

ANSWER
$\left[\begin{array}{rr}1 & -1 \\ 0 & 2 \\ 1 & 1 \\ 3 & 1\end{array}\right]$

EXPLANATION Note that

$$
[1,0]=\frac{1}{5}[-1,3]+\frac{3}{5}[2,-1] \quad[0,1]=\frac{2}{5}[-1,3]+\frac{1}{5}[2,-1]
$$

Therefore, since F is linear, we have

$$
\begin{aligned}
& F([1,0])=\frac{1}{5} F([-1,3])+\frac{3}{5} F([2,-1])=[1,0,1,3] \\
& F([0,1])=\frac{2}{5} F([-1,3])+\frac{1}{5} F([2,-1])=[-1,2,1,1] .
\end{aligned}
$$

[6] 2. On the separate sheet circulated with the exam you will find the definition of a vector space over \mathbb{R}.

Let V be a vector space over \mathbb{R}.
From the axioms listed prove that, for all vectors a, b, and c in V,

$$
a+b=a+c \text { implies } b=c .
$$

ANSWER Suppose that $\boldsymbol{a}+\boldsymbol{b}=\boldsymbol{a}+\boldsymbol{c}$. Then

$$
\begin{aligned}
\boldsymbol{b} & =\mathbf{0}+\boldsymbol{b} & & \text { by A3 } \\
& =(\boldsymbol{a}+(-\boldsymbol{a}))+\boldsymbol{b} & & \text { by A4 } \\
& =(\boldsymbol{b}+\boldsymbol{a})+(-\boldsymbol{a}) & & \text { by A1, A2 } \\
& =(\boldsymbol{c}+\boldsymbol{a})+(-\boldsymbol{a}) & & \text { hypothesis } \\
& =(\boldsymbol{a}+(-\boldsymbol{a}))+\boldsymbol{c} & & \text { by A1, A2 } \\
& =\mathbf{0}+\boldsymbol{c} & & \text { by A4 } \\
& =\boldsymbol{c} & & \text { A3. }
\end{aligned}
$$

[3] 3. (a) Let V be a vector space over \mathbb{R}. Let W be a subset of V.
State necessary and sufficient conditions for W to be a subspace of V.

ANSWER $\quad W$ is a subspace of V if and only if

1. $W \neq \emptyset$.
2. W is closed under vector addition, i.e., $\boldsymbol{a}+\boldsymbol{b} \in W$ for all \boldsymbol{a} and \boldsymbol{b} in W.
3. W is closed under scalar multiplication, i.e., $r \boldsymbol{a} \in W$ for all r in \mathbb{R} and \boldsymbol{a} in W.
[4] (b) Let V be the vector space ${ }^{\mathbb{R}} \mathbb{R}$ of all functions from \mathbb{R} into \mathbb{R}. Let W denote the set

$$
\left\{f \in{ }^{\mathbb{R}} \mathbb{R}:(\forall x, y \in \mathbb{R})[x y>0 \text { implies } f(x)=f(y)]\right\}
$$

Decide whether W is a subspace of V and justify your answer.

ANSWER Yes

We check the three conditions mentioned in (a).

1. $W \neq \emptyset$ because every constant function is in W.
2. Consider $f, g \in W$ and $x, y \in \mathbb{R}$ such that $x y>0$. From the definition of W,

$$
f(x)=f(y) \text { and } g(x)=g(y) .
$$

Therefore

$$
(f+g)(x)=f(x)+g(x)=f(y)+g(y)=(f+g)(y)
$$

and so $f+g \in W$. Thus W is closed under vector addition.
3. Consider $r \in \mathbb{R}, f \in W$ and $x, y \in \mathbb{R}$ such that $x y>0$. From the definition of $W, f(x)=f(y)$. Therefore

$$
(r f)(x)=r \cdot f(x)=r \cdot f(y)=(r f)(y) .
$$

and so $r f \in W$. Thus W is closed under scalar multiplication.
[2] 4. (a) Let V be a vector space over \mathbb{R}, and \boldsymbol{v} be a vector in V.
Let $\mathcal{B}=\left\langle\boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{n}\right\rangle$ be an ordered basis of V.
Define the coordinate vector $v_{\mathcal{B}}$ of v with respect to \mathcal{B}.

ANSWER

$\boldsymbol{v}_{\mathcal{B}}$ is defined to be $\left[r_{1}, \ldots, r_{n}\right]$, where r_{1}, \ldots, r_{n} are the unique real numbers satisfying

$$
\boldsymbol{v}=r_{1} \boldsymbol{b}_{1}+\ldots+r_{n} \boldsymbol{b}_{n} .
$$

[3] (b) Let \mathcal{B} denote the ordered basis $\langle[-1,1,2],[1,-1,0],[0,1,0]\rangle$ for \mathbb{R}^{3}.
Compute the coordinate vector of $[1,0,0]$ with respect to \mathcal{B}.

ANSWER
$\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]$

EXPLANATION

The required coordinate vector \boldsymbol{x} satisfies:

$$
x_{1}\left[\begin{array}{r}
-1 \\
1 \\
2
\end{array}\right]+x_{2}\left[\begin{array}{r}
1 \\
-1 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{rrc}
-1 & 1 & 0 \\
1 & -1 & 1 \\
2 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

This system can be solved in one's head because, looking at the third component we see that $x_{1}=0$. Then, looking at the first component, we have $x_{2}=1$. Finally, $x_{3}=1$ by inspection of the second component.
5. Let V be the subspace of $\mathbb{R}[x]$ consisting of all polynomials of degree at most 1 , and W be the subspace of $\mathbb{R}[x]$ consisting of all polynomials of degree at most 2 .

Let \mathcal{B}, \mathcal{C} denote the ordered bases

$$
\langle x, 1\rangle, \quad\left\langle x^{2}+x+1, x+1,1\right\rangle
$$

for V, W respectively.
Let $T: V \rightarrow W$ denote the linear transformation defined by $T(p)=(x+1) p$.
[5] (a) Compute the matrix which represents T with respect to \mathcal{B}, \mathcal{C}.

ANSWER
$\left[\begin{array}{rr}1 & 0 \\ 0 & 1 \\ -1 & 0\end{array}\right]$

[2] (b) Is there a linear transformation $T^{\prime}: W \rightarrow V$ such that $T^{\prime} \circ T$ is the identity on V ? Justify your answer.

ANSWER
Yes. By a theorem there is a unique linear transformation $T^{\prime}: W \rightarrow V$ which satisfies $T^{\prime}\left(x^{2}+x\right)=x, T^{\prime}(x+1)=1, T^{\prime}(1)=0$. It is clear that $T^{\prime} \circ T(x)=x$ and $T^{\prime} \circ T(1)=1$. Since $T^{\prime} \circ T$ agrees with i_{V} on a basis of $V, T^{\prime} \circ T$ is the identity on V.

EXPLANATION

(a) $T(x)=(x+1) x=x^{2}+x=1\left(x^{2}+x+1\right)+0(x+1)+(-1) 1$

$$
T(1)=(x+1) 1=x+1=0\left(x^{2}+x+1\right)+1(x+1)+0(1)
$$

[2] 6. (a) Let b, \boldsymbol{c} be vectors in \mathbb{R}^{3}.
Explain the relationship of the vector $b \times c$ to the vectors b, c in geometrical terms.

ANSWER

The norm $\|\boldsymbol{b} \times \boldsymbol{c}\|$, i.e., the length of $\boldsymbol{b} \times \boldsymbol{c}$ is the area of the rectangle determined by b and c.
$b \times c$ is orthogonal to the plane determined by b and c.
$\langle\boldsymbol{b}, \boldsymbol{c}, \boldsymbol{b} \times \boldsymbol{c}\rangle$ is a right-handed triple of vectors.
[2] (b) Find the area of the triangle whose vertices are the points $(1,1,3),(0,1,0),(1,1,0)$ in \mathbb{R}^{3}.

ANSWER
$3 / 2$

EXPLANATION

(b) Subtracting $(0,1,0)$ from all three points translates the given triangle to the triangle $(1,0,3),(0,0,0),(1,0,0)$, i.e., to the triangle determined by $0,(1,0,3)$, and $(1,0,0)$.

The area of the triangle $0(1,0,3)(1,0,0)$ is half of the area of the parallelogram determined by $(1,0,3),(1,0,0)$, which is

$$
\|[1,0,3] \times[1,0,0]\|=\|[0,3,0]\|=3
$$

[2] 7. (a) Evaluate the determinant

$$
\left|\begin{array}{lll}
a+1 & a+4 & a+7 \\
a+2 & a+5 & a+8 \\
a+4 & a+6 & a+9
\end{array}\right|
$$

ANSWER

-3

EXPLANATION Applying the row operations $R_{3} \rightarrow R_{3}-R_{2}, R_{2} \rightarrow R_{2}-R_{1}$, we get

$$
\left|\begin{array}{rrr}
a+1 & a+4 & a+7 \\
a+2 & a+5 & a+8 \\
a+4 & a+6 & a+9
\end{array}\right|=\left|\begin{array}{rrr}
a+1 & a+4 & a+7 \\
1 & 1 & 1 \\
2 & 1 & 1
\end{array}\right|=\left|\begin{array}{rrr}
a+1 & a+4 & 3 \\
1 & 1 & 0 \\
2 & 1 & 0
\end{array}\right|
$$

where the second equality comes from the column operation $C_{3} \rightarrow C_{3}-C_{2}$.
Expanding down column 3, gives the result.
[2] (b) Let A be an $n \times n$ matrix.
Define the matrix $\operatorname{adj}(A)$ called the adjoint of A.
State the most important property of the adjoint of A.

ANSWER

Definition

$\operatorname{adj}(A)$ is the $n \times n$ matrix whose (i, j)-th entry is $(-1)^{i+j}\left|A_{j i}\right|$, where $A_{j i}$ is the (j, i)-th minor of A.

Most important property

$$
A \operatorname{adj}(A)=\operatorname{adj}(A) A=|A| I
$$

[2] 8. (a) Express the following complex number in the form $a+i b$, where $a, b \in \mathbb{R}$ and $i^{2}=-1$

$$
\frac{(2-i)(1+i)}{1+2 i}
$$

[2] (b) Compute $r, \theta \in \mathbb{R}$, such that $r>0$, $0 \leq \theta<2 \pi$, and

$$
2-i=r e^{i \theta}
$$

ANSWER	
r	$=\sqrt{5}$
θ	$=2 \pi-\arctan (1 / 2)$

