
MATH 232

Second Midterm

November 17, 1999

ANSWER KEY

1.

Question:
Given are four vectors x = [0; 1; 1; 0], y = [1;�2; 5;�1], z = [2; 1; 2; 3] and w = x+z = [2; 2; 3; 3].
It is given that the set B = fx;y;zg is a basis for the subspace V of R4.
(a) Let A 2 R4�4 and let the row vectors of A be x;y;z;w. Find the rank of A. Give a reason for
your answer.
(b) Find a basis B0 for V such that w 2 B0. Justify your answer.

Marking:
(a) - 2 marks
(b) - 1 mark for a correct answer

2 marks for justifying the answer

3 marks total for part (b)

5 marks total for Question 1|parts (a) and (b)

Solution:
(a) Since B = fx;y;zg is a basis for V and w 2 V , we see that the row space of A is precisely V .
By Theorem 2.4, rank(A) = dim(rowspace(A)) = dim(V ) = 3.

A more labourious solution to part (a) consists in reducing A to a row-echelon form H and counting
the number of non-zero rows in H.

(b) There are in�nitely many correct answers. While looking for B0 we can take advantage of
Theorem 2.3 (part 3), which implies that any set of 3 vectors that spans V (or any set of 3 independent
vectors in V ) is a basis for V .
For example, from w = x+ z it follows that, for any scalars r1; r2; r3 2 R, we have

r1x+ r2y + r3w = (r1 + r3)x+ r2y + r3z

r1x+ r2y + r3z = (r1 � r3)x+ r2y + r3w

and so sp(x;y;w) = sp(x;y;z) = V . Therefore B0 = fx;y;wg is a basis for V .
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A more labourious solution to part (b) consists in setting up the matrix C that has w as the �rst
column and x;y;z (in some order) as the remaining three columns, and reducing C to a row-echelon
form H. The columns of C corresponding to the columns of H containing pivots then form a basis
for V . Since H will have a pivot in the �rst column, this will yield a basis for V that contains w.

2.

Question:
Let t = [�5; 2] and u = [3;�1]. Let T : R2 ! R

3 be the linear transformation de�ned by
T (t) = [1;�3; 2] and T (u) = [�1; 2; 0].
(a) Find the standard matrix representation of T .
(b) Use the answer to part (a) to compute T ([2; 1]).

Marking:
(a) - 3 marks
(b) - 1 mark

Solution:
(a) Using the Corollary on p. 146, the standard matrix representation of T is the matrix [T (e1) T (e2) ],
where fe1;e2g is the standard basis for R2. Therefore we need to express e1 and e2 as linear
combinations of t and u. Using Gauss reduction we �nd

�
�5 3 1

2 �1 0

�
�

�
1 0 1

0 1 2

�
and

�
�5 3 0

2 �1 1

�
�

�
1 0 3

0 1 5

�
:

(It is wiser to perform both reductions in one process.) Therefore e1 = t+ 2u, e2 = 3t+ 5u and

T (e1) = T (t) + 2T (u) = [1;�3; 2] + 2[�1; 2; 0] = [�1; 1; 2]

T (e2) = 3T (t) + 5T (u) = 3[1;�3; 2] + 5[�1; 2; 0] = [�2; 1; 6] :

The standard matrix representation of T is

[T (e1) T (e2) ] =

2
4 �1 �2

1 1

2 6

3
5 :

(b) We compute

2
4 �1 �2

1 1

2 6

3
5
�

2

1

�
=

2
4 �4

3

10

3
5 :

Thus T ([2; 1]) = [�4; 3; 10].
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3.

Question:
Let F be the vector space of all functions mapping R into R. We say that f 2 F is an odd function

if f(�x) = �f(x) for every x 2 R. Let S denote the set of all odd functions. Decide whether S is
a subspace of F . Justify your answer.

Marking:
5 marks

Solution:
The set S is a subspace of F . We will prove this using Theorem 3.2.
1. The set S is nonempty. For example, the constant function f(x) = 0 is in the set S.
2. The set S is closed under vector addition: Suppose f1; f2 2 S. Then

(f1 + f2)(�x) = f1(�x) + f2(�x) = �f1(x) + (�f2(x)) = �(f1(x) + f2(x)) = �(f1 + f2)(x)

and so f1 + f2 2 S.
3. The set S is closed under scalar multiplication: Let c 2 R, f 2 S. Then

(cf)(�x) = c(f(�x)) = c(�f(x)) = �cf(x) = �(cf)(x)

and so cf 2 S.

4.

Question:
Let Pn be the vector space of all polynomials in x, with real coe�cients and of degree less than or
equal to n, together with the zero polynomial. Let

B = (x3 + x; x2 � x; x� 1; 1) and B0 = (x2; x; 1)

be ordered bases for P3 and P2, respectively. Let the linear transformation T : P3 ! P2 be de�ned
by T (p) = p0, the derivative of p with respect to x.
(a) Find the matrix representation of T relative to B, B0.
(b) Find the coordinate vector (x3 � x)B of x3 � x relative to B.

Marking:
(a) - 4 marks
(b) - 2 marks

Solution:
(a) We have to �nd T (b)B0 for all b 2 B. We compute

T (x3 + x)B0 = (3x2 + 1)B0 = [3; 0; 1]

T (x2 � x)B0 = (2x� 1)B0 = [0; 2;�1]

T (x� 1)B0 = 1B0 = [0; 0; 1]

T (1)B0 = 0B0 = [0; 0; 0] :
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By De�nition 3.11 the matrix representation of T relative to B, B0 is

2
4 3 0 0 0

0 2 0 0

1 �1 1 0

3
5 :

(b) By De�nition 3.8 the coordinate vector (x3 � x)B is the vector [r1; r2; r3; r4] 2 R
4 such that

x3 � x = r1 � (x
3 + x) + r2 � (x

2 � x) + r3 � (x� 1) + r4 � 1 :

Because of the particular form of B (namely, B contains exactly one polynomial of degree i for each
i = 3; 2; 1; 0), it is easy to �nd the ri's. We compute

x3 � x = 1 � (x3 + x)� 2x

= 1 � (x3 + x) + 0 � (x2 � x) + (�2) � (x� 1) � 2

= 1 � (x3 + x) + 0 � (x2 � x) + (�2) � (x� 1) + (�2) � 1 :

Thus
(x3 � x)B = [1; 0;�2;�2] :

5.

Question:
Given are four points P = (1; 1; 3), Q = (2; 0; 5), R = (1; 4; 1) and S = (3; 2; 5). Decide whether P ,
Q, R and S are coplanar (i.e. whether they all lie in one plane in R3). Give a reason for your answer.

Marking:
1 mark for computing the vectors a; b; c
1 mark for noting that the points are coplanar i� the volume of the corresponding box is 0
1 mark for using the correct formula for the volume of the box
1 mark for correctly computing the determinant

4 marks total

Solution:
Let us consider the vectors

a = [2; 0; 5]� [1; 1; 3] = [1;�1; 2]

b = [1; 4; 1]� [1; 1; 3] = [0; 3;�2]

c = [3; 2; 5]� [1; 1; 3] = [2; 1; 2] :

The points P , Q, R and S are coplanar if and only if the volume of the box (parallelepiped) determined

by the vectors a; b; c is zero. This volume is the absolute value of the determinant

������
a

b

c

������. We compute

������
a

b

c

������ =

������
1 �1 2

0 3 �2

2 1 2

������ =

������
1 �1 2

0 3 �2

0 3 �2

������ =

���� 3 �2

3 �2

���� = 0 :

Thus the points P , Q, R and S are coplanar.
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6.

Question:
Evaluate the determinant ����������

2 4 7 �1 4

0 �3 2 �1 4

1 �13 3 �2 3

0 0 1 2 1

0 3 0 0 0

����������
:

Marking:
4 marks

Solution:

����������

2 4 7 �1 4

0 �3 2 �1 4

1 �13 3 �2 3

0 0 1 2 1

0 3 0 0 0

����������
= 3 � (�1)5+2 �

��������

2 7 �1 4

0 2 �1 4

1 3 �2 3

0 1 2 1

��������
= �3 �

��������

0 1 3 �2

0 2 �1 4

1 3 �2 3

0 1 2 1

��������

= �3 � (�1)3+1 �

������
1 3 �2

2 �1 4

1 2 1

������ = �3 �

������
1 3 �2

0 �7 8

0 �1 3

������ = �3 �

���� �7 8

�1 3

����

= �3 � ((�7) � 3 � 8 � (�1)) = �3 � (�21 + 8) = 39

7.

Question:
Let A 2 Rn�n. Use the known facts about determinants to prove that A is invertible if and only if
0 is not an eigenvalue of A.

Marking:
4 marks

Solution:
By Theorem 4.3, A is invertible if and only if det(A) 6= 0, that is, if and only if det(A � 0I) 6= 0,
which is the case if and only if 0 is not an eigenvalue of A.
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8.

Question:
(a) Let A 2 Rn�n and assume that A is diagonalizable. Explain brie
y how you can compute, for any
positive integer k, the power Ak using the diagonalization of A.
(b) Let

A =

�
1 1

1 1

�
:

Use diagonalization to �nd the formula for Ak, k � 1.

Marking:
(a) - 2 marks
(b) - 6 marks

8 marks total

Solution:
(a) Let A 2 Rn�n. By De�nition 5.3, A is diagonalizable if there exists an invertible matrix C such
that C�1AC = D, a diagonal matrix. If this is the case, then A = CDC�1 and

Ak = CDkC�1 :

(b) Let

A =

�
1 1

1 1

�
:

We have

det(A� �I) =

���� 1 � � 1

1 1 � �

���� = (1 � �)(1 � �) � 1 � 1 = �2 � 2� = �(� � 2)

and so the eigenvalues are �1 = 0 and �2 = 2. Since the eigenvalues are distinct,A is diagonalizable by
Theorem 5.3. (Remark: The fact that A is diagonalizable follows immediately from Theorem 5.5, but
to actually �nd the diagonalization we of course need to compute the eigenvalues and eigenvectors.)
By Gauss reduction we �nd

A� �1I =

�
1 1

1 1

�
�

�
1 1

0 0

�
and A� �2I =

�
�1 1

1 �1

�
�

�
1 �1

0 0

�
:

Thus the eigenvectors corresponding to �1 are the nonzero vectors in sp([�1; 1]) and the eigenvectors
corresponding to �2 are the nonzero vectors in sp([1; 1]). Let us select the eigenvectors v1 = [�1; 1]

and v2 = [1; 1]. If we let

C = [v1 v2 ] =

�
�1 1

1 1

�
and D =

�
�1 0

0 �2

�
=

�
0 0

0 2

�

6



then the diagonalization of A is C�1AC = D and by part (a)|see also Corollary 2 on p. 307|we
have Ak = CDkC�1. To compute the inverse of C we use the adjoint matrix formula or Gauss
reduction. We �nd

C�1 =

�
�1=2 1=2

1=2 1=2

�

and so

Ak = CDkC�1 =

�
�1 1

1 1

� �
0 0

0 2k

� �
�1=2 1=2

1=2 1=2

�

=

�
0 2k

0 2k

� �
�1=2 1=2

1=2 1=2

�
=

�
2k�1 2k�1

2k�1 2k�1

�
:
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