MATH 232
Second Midterm
November 17, 1999

ANSWER KEY

1.

Question:
Given are four vectors $\boldsymbol{x}=[0,1,1,0], \boldsymbol{y}=[1,-2,5,-1], \boldsymbol{z}=[2,1,2,3]$ and $\boldsymbol{w}=\boldsymbol{x}+\boldsymbol{z}=[2,2,3,3]$.
It is given that the set $B=\{\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}\}$ is a basis for the subspace V of \mathbb{R}^{4}.
(a) Let $A \in \mathbb{R}^{4 \times 4}$ and let the row vectors of A be $\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}, \boldsymbol{w}$. Find the rank of A. Give a reason for your answer.
(b) Find a basis B^{\prime} for V such that $\boldsymbol{w} \in B^{\prime}$. Justify your answer.

Marking:
(a)-2 marks
(b) - 1 mark for a correct answer

2 marks for justifying the answer
3 marks total for part (b)
5 marks total for Question 1—parts (a) and (b)

Solution:

(a) Since $B=\{\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}\}$ is a basis for V and $\boldsymbol{w} \in V$, we see that the row space of A is precisely V. By Theorem 2.4, $\operatorname{rank}(A)=\operatorname{dim}(\operatorname{rowspace}(A))=\operatorname{dim}(V)=3$.

A more labourious solution to part (a) consists in reducing A to a row-echelon form H and counting the number of non-zero rows in H.
(b) There are infinitely many correct answers. While looking for B^{\prime} we can take advantage of Theorem 2.3 (part 3), which implies that any set of 3 vectors that spans V (or any set of 3 independent vectors in V) is a basis for V.
For example, from $\boldsymbol{w}=\boldsymbol{x}+\boldsymbol{z}$ it follows that, for any scalars $r_{1}, r_{2}, r_{3} \in \mathbb{R}$, we have

$$
\begin{aligned}
r_{1} \boldsymbol{x}+r_{2} \boldsymbol{y}+r_{3} \boldsymbol{w} & =\left(r_{1}+r_{3}\right) \boldsymbol{x}+r_{2} \boldsymbol{y}+r_{3} \boldsymbol{z} \\
r_{1} \boldsymbol{x}+r_{2} \boldsymbol{y}+r_{3} \boldsymbol{z} & =\left(r_{1}-r_{3}\right) \boldsymbol{x}+r_{2} \boldsymbol{y}+r_{3} \boldsymbol{w}
\end{aligned}
$$

and so $\operatorname{sp}(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{w})=\operatorname{sp}(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z})=V$. Therefore $B^{\prime}=\{\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{w}\}$ is a basis for V.

A more labourious solution to part (b) consists in setting up the matrix C that has \boldsymbol{w} as the first column and $\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}$ (in some order) as the remaining three columns, and reducing C to a row-echelon form H. The columns of C corresponding to the columns of H containing pivots then form a basis for V. Since H will have a pivot in the first column, this will yield a basis for V that contains \boldsymbol{w}.
2.

Question:
Let $\boldsymbol{t}=[-5,2]$ and $\boldsymbol{u}=[3,-1]$. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be the linear transformation defined by $T(\boldsymbol{t})=[1,-3,2]$ and $T(\boldsymbol{u})=[-1,2,0]$.
(a) Find the standard matrix representation of T.
(b) Use the answer to part (a) to compute $T([2,1])$.

Marking:
(a) - 3 marks
(b) -1 mark

Solution:

(a) Using the Corollary on p. 146, the standard matrix representation of T is the matrix [$T\left(\boldsymbol{e}_{1}\right) T\left(\boldsymbol{e}_{2}\right)$], where $\left\{e_{1}, e_{2}\right\}$ is the standard basis for \mathbb{R}^{2}. Therefore we need to express e_{1} and e_{2} as linear combinations of \boldsymbol{t} and \boldsymbol{u}. Using Gauss reduction we find

$$
\left[\begin{array}{rr|r}
-5 & 3 & 1 \\
2 & -1 & 0
\end{array}\right] \sim\left[\begin{array}{ll|l}
1 & 0 & 1 \\
0 & 1 & 2
\end{array}\right] \quad \text { and } \quad\left[\begin{array}{rr|r}
-5 & 3 & 0 \\
2 & -1 & 1
\end{array}\right] \sim\left[\begin{array}{ll|l}
1 & 0 & 3 \\
0 & 1 & 5
\end{array}\right] .
$$

(It is wiser to perform both reductions in one process.) Therefore $\boldsymbol{e}_{1}=\boldsymbol{t}+2 \boldsymbol{u}, \boldsymbol{e}_{2}=3 \boldsymbol{t}+5 \boldsymbol{u}$ and

$$
\begin{aligned}
& T\left(\boldsymbol{e}_{1}\right)=T(\boldsymbol{t})+2 T(\boldsymbol{u})=[1,-3,2]+2[-1,2,0]=[-1,1,2] \\
& T\left(\boldsymbol{e}_{2}\right)=3 T(\boldsymbol{t})+5 T(\boldsymbol{u})=3[1,-3,2]+5[-1,2,0]=[-2,1,6] .
\end{aligned}
$$

The standard matrix representation of T is

$$
\left[T\left(\boldsymbol{e}_{1}\right) T\left(\boldsymbol{e}_{2}\right)\right]=\left[\begin{array}{rr}
-1 & -2 \\
1 & 1 \\
2 & 6
\end{array}\right]
$$

(b) We compute

$$
\left[\begin{array}{rr}
-1 & -2 \\
1 & 1 \\
2 & 6
\end{array}\right]\left[\begin{array}{l}
2 \\
1
\end{array}\right]=\left[\begin{array}{r}
-4 \\
3 \\
10
\end{array}\right]
$$

Thus $T([2,1])=[-4,3,10]$.

3.

Question:
Let F be the vector space of all functions mapping \mathbb{R} into \mathbb{R}. We say that $f \in F$ is an odd function if $f(-x)=-f(x)$ for every $x \in \mathbb{R}$. Let S denote the set of all odd functions. Decide whether S is a subspace of F. Justify your answer.

Marking:
5 marks

Solution:

The set S is a subspace of F. We will prove this using Theorem 3.2.

1. The set S is nonempty. For example, the constant function $f(x)=0$ is in the set S.
2. The set S is closed under vector addition: Suppose $f_{1}, f_{2} \in S$. Then

$$
\left(f_{1}+f_{2}\right)(-x)=f_{1}(-x)+f_{2}(-x)=-f_{1}(x)+\left(-f_{2}(x)\right)=-\left(f_{1}(x)+f_{2}(x)\right)=-\left(f_{1}+f_{2}\right)(x)
$$

and so $f_{1}+f_{2} \in S$.
3. The set S is closed under scalar multiplication: Let $c \in \mathbb{R}, f \in S$. Then

$$
(c f)(-x)=c(f(-x))=c(-f(x))=-c f(x)=-(c f)(x)
$$

and so $c f \in S$.

4.

Question:
Let P_{n} be the vector space of all polynomials in x, with real coefficients and of degree less than or equal to n, together with the zero polynomial. Let

$$
\mathcal{B}=\left(x^{3}+x, x^{2}-x, x-1,1\right) \quad \text { and } \quad \mathcal{B}^{\prime}=\left(x^{2}, x, 1\right)
$$

be ordered bases for P_{3} and P_{2}, respectively. Let the linear transformation $T: P_{3} \rightarrow P_{2}$ be defined by $T(p)=p^{\prime}$, the derivative of p with respect to x.
(a) Find the matrix representation of T relative to $\mathcal{B}, \mathcal{B}^{\prime}$.
(b) Find the coordinate vector $\left(x^{3}-x\right)_{\mathcal{B}}$ of $x^{3}-x$ relative to \mathcal{B}.

Marking:
(a)-4 marks
(b) - 2 marks

Solution:
(a) We have to find $T(\boldsymbol{b})_{\mathcal{B}^{\prime}}$ for all $\boldsymbol{b} \in \mathcal{B}$. We compute

$$
\begin{aligned}
T\left(x^{3}+x\right)_{\mathcal{B}^{\prime}} & =\left(3 x^{2}+1\right)_{\mathcal{B}^{\prime}}=[3,0,1] \\
T\left(x^{2}-x\right)_{\mathcal{B}^{\prime}} & =(2 x-1)_{\mathcal{B}^{\prime}}=[0,2,-1] \\
T(x-1)_{\mathcal{B}^{\prime}} & =1_{\mathcal{B}^{\prime}}=[0,0,1] \\
T(1)_{\mathcal{B}^{\prime}} & =0_{\mathcal{B}^{\prime}}=[0,0,0] .
\end{aligned}
$$

By Definition 3.11 the matrix representation of T relative to $\mathcal{B}, \mathcal{B}^{\prime}$ is

$$
\left[\begin{array}{rrrr}
3 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
1 & -1 & 1 & 0
\end{array}\right]
$$

(b) By Definition 3.8 the coordinate vector $\left(x^{3}-x\right)_{\mathcal{B}}$ is the vector $\left[r_{1}, r_{2}, r_{3}, r_{4}\right] \in \mathbb{R}^{4}$ such that

$$
x^{3}-x=r_{1} \cdot\left(x^{3}+x\right)+r_{2} \cdot\left(x^{2}-x\right)+r_{3} \cdot(x-1)+r_{4} \cdot 1 .
$$

Because of the particular form of \mathcal{B} (namely, \mathcal{B} contains exactly one polynomial of degree i for each $i=3,2,1,0$), it is easy to find the r_{i} 's. We compute

$$
\begin{aligned}
x^{3}-x & =1 \cdot\left(x^{3}+x\right)-2 x \\
& =1 \cdot\left(x^{3}+x\right)+0 \cdot\left(x^{2}-x\right)+(-2) \cdot(x-1)-2 \\
& =1 \cdot\left(x^{3}+x\right)+0 \cdot\left(x^{2}-x\right)+(-2) \cdot(x-1)+(-2) \cdot 1 .
\end{aligned}
$$

Thus

$$
\left(x^{3}-x\right)_{\mathcal{B}}=[1,0,-2,-2] .
$$

5.

Question:
Given are four points $P=(1,1,3), Q=(2,0,5), R=(1,4,1)$ and $S=(3,2,5)$. Decide whether P, Q, R and S are coplanar (i.e. whether they all lie in one plane in \mathbb{R}^{3}). Give a reason for your answer.

Marking:
1 mark for computing the vectors a, b, c
1 mark for noting that the points are coplanar iff the volume of the corresponding box is 0
1 mark for using the correct formula for the volume of the box
1 mark for correctly computing the determinant

4 marks total

Solution:

Let us consider the vectors

$$
\begin{aligned}
\boldsymbol{a} & =[2,0,5]-[1,1,3]=[1,-1,2] \\
\boldsymbol{b} & =[1,4,1]-[1,1,3]=[0,3,-2] \\
\boldsymbol{c} & =[3,2,5]-[1,1,3]=[2,1,2] .
\end{aligned}
$$

The points P, Q, R and S are coplanar if and only if the volume of the box (parallelepiped) determined by the vectors $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}$ is zero. This volume is the absolute value of the determinant $\left|\begin{array}{l}\boldsymbol{a} \\ \boldsymbol{b} \\ \boldsymbol{c}\end{array}\right|$. We compute

$$
\left|\begin{array}{l}
\boldsymbol{a} \\
\boldsymbol{b} \\
\boldsymbol{c}
\end{array}\right|=\left|\begin{array}{rrr}
1 & -1 & 2 \\
0 & 3 & -2 \\
2 & 1 & 2
\end{array}\right|=\left|\begin{array}{rrr}
1 & -1 & 2 \\
0 & 3 & -2 \\
0 & 3 & -2
\end{array}\right|=\left|\begin{array}{ll}
3 & -2 \\
3 & -2
\end{array}\right|=0 .
$$

Thus the points P, Q, R and S are coplanar.

6.

Question:
Evaluate the determinant

$$
\left|\begin{array}{rrrrr}
2 & 4 & 7 & -1 & 4 \\
0 & -3 & 2 & -1 & 4 \\
1 & -13 & 3 & -2 & 3 \\
0 & 0 & 1 & 2 & 1 \\
0 & 3 & 0 & 0 & 0
\end{array}\right| .
$$

Marking:

Solution:

$$
\begin{gathered}
\left|\begin{array}{rrrrr}
2 & 4 & 7 & -1 & 4 \\
0 & -3 & 2 & -1 & 4 \\
1 & -13 & 3 & -2 & 3 \\
0 & 0 & 1 & 2 & 1 \\
0 & 3 & 0 & 0 & 0
\end{array}\right|=3 \cdot(-1)^{5+2} \cdot\left|\begin{array}{rrrr}
2 & 7 & -1 & 4 \\
0 & 2 & -1 & 4 \\
1 & 3 & -2 & 3 \\
0 & 1 & 2 & 1
\end{array}\right|=-3 \cdot\left|\begin{array}{rrrr}
0 & 1 & 3 & -2 \\
0 & 2 & -1 & 4 \\
1 & 3 & -2 & 3 \\
0 & 1 & 2 & 1
\end{array}\right| \\
=-3 \cdot(-1)^{3+1} \cdot\left|\begin{array}{rrr}
1 & 3 & -2 \\
2 & -1 & 4 \\
1 & 2 & 1
\end{array}\right|=-3 \cdot\left|\begin{array}{rrr}
1 & 3 & -2 \\
0 & -7 & 8 \\
0 & -1 & 3
\end{array}\right|=-3 \cdot\left|\begin{array}{rr}
-7 & 8 \\
-1 & 3
\end{array}\right| \\
=-3 \cdot((-7) \cdot 3-8 \cdot(-1))=-3 \cdot(-21+8)=39
\end{gathered}
$$

7.

Question:
Let $A \in \mathbb{R}^{n \times n}$. Use the known facts about determinants to prove that A is invertible if and only if 0 is not an eigenvalue of A.
$\frac{\text { Marking: }}{4 \text { marks }}$
Solution:
By Theorem 4.3, A is invertible if and only if $\operatorname{det}(A) \neq 0$, that is, if and only if $\operatorname{det}(A-0 I) \neq 0$, which is the case if and only if 0 is not an eigenvalue of A.

8.

Question:
(a) Let $A \in \mathbb{R}^{n \times n}$ and assume that A is diagonalizable. Explain briefly how you can compute, for any positive integer k, the power A^{k} using the diagonalization of A.
(b) Let

$$
A=\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]
$$

Use diagonalization to find the formula for $A^{k}, k \geq 1$.
Marking:
(a) - 2 marks
(b) -6 marks

8 marks total
Solution:
(a) Let $A \in \mathbb{R}^{n \times n}$. By Definition 5.3, A is diagonalizable if there exists an invertible matrix C such that $C^{-1} A C=D$, a diagonal matrix. If this is the case, then $A=C D C^{-1}$ and

$$
A^{k}=C D^{k} C^{-1}
$$

(b) Let

$$
A=\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]
$$

We have

$$
\operatorname{det}(A-\lambda I)=\left|\begin{array}{cc}
1-\lambda & 1 \\
1 & 1-\lambda
\end{array}\right|=(1-\lambda)(1-\lambda)-1 \cdot 1=\lambda^{2}-2 \lambda=\lambda(\lambda-2)
$$

and so the eigenvalues are $\lambda_{1}=0$ and $\lambda_{2}=2$. Since the eigenvalues are distinct, A is diagonalizable by Theorem 5.3. (Remark: The fact that A is diagonalizable follows immediately from Theorem 5.5, but to actually find the diagonalization we of course need to compute the eigenvalues and eigenvectors.) By Gauss reduction we find

$$
A-\lambda_{1} I=\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right] \sim\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right] \quad \text { and } \quad A-\lambda_{2} I=\left[\begin{array}{rr}
-1 & 1 \\
1 & -1
\end{array}\right] \sim\left[\begin{array}{rr}
1 & -1 \\
0 & 0
\end{array}\right]
$$

Thus the eigenvectors corresponding to λ_{1} are the nonzero vectors in $\mathrm{sp}([-1,1])$ and the eigenvectors corresponding to λ_{2} are the nonzero vectors in $\operatorname{sp}([1,1])$. Let us select the eigenvectors $\boldsymbol{v}_{1}=[-1,1]$ and $\boldsymbol{v}_{2}=[1,1]$. If we let

$$
C=\left[\begin{array}{ll}
\boldsymbol{v}_{1} & \boldsymbol{v}_{2}
\end{array}\right]=\left[\begin{array}{rr}
-1 & 1 \\
1 & 1
\end{array}\right] \quad \text { and } \quad D=\left[\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 2
\end{array}\right]
$$

then the diagonalization of A is $C^{-1} A C=D$ and by part (a)—see also Corollary 2 on p . 307-we have $A^{k}=C D^{k} C^{-1}$. To compute the inverse of C we use the adjoint matrix formula or Gauss reduction. We find

$$
C^{-1}=\left[\begin{array}{cc}
-1 / 2 & 1 / 2 \\
1 / 2 & 1 / 2
\end{array}\right]
$$

and so

$$
\begin{aligned}
A^{k} & =C D^{k} C^{-1}=\left[\begin{array}{rr}
-1 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
0 & 0 \\
0 & 2^{k}
\end{array}\right]\left[\begin{array}{cc}
-1 / 2 & 1 / 2 \\
1 / 2 & 1 / 2
\end{array}\right] \\
& =\left[\begin{array}{ll}
0 & 2^{k} \\
0 & 2^{k}
\end{array}\right]\left[\begin{array}{cc}
-1 / 2 & 1 / 2 \\
1 / 2 & 1 / 2
\end{array}\right]=\left[\begin{array}{cc}
2^{k-1} & 2^{k-1} \\
2^{k-1} & 2^{k-1}
\end{array}\right] .
\end{aligned}
$$

