Math 232, Elementary Linear Algebra
 J. Hebron, Spring 2000
 Mid-Term Examination \#3

Wednesday, March 29th, 2000
Time: 50 minutes

Student ID Number

Name
(Please underline your family name)

Signature

Instructions:

- Please fill-in the above information in ink.
- Do not open this exam until told to do so.
- No books, no notes, no calculators, no cell phones.
- Please sign the bottom of every page
(in case your exam becomes unstapled)

Question \#:	1	2	3	4	5	6	7	8	Tot
Mark:									
Out of:	8	14	9	6	8	8	5	17	75

1. Let $\mathbf{A}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 3 & 2 & -3 \\ 2 & 0 & 1\end{array}\right]$.
(a) What is the determinant of \mathbf{A} ?
[1]
(b) What is the adjoint of \mathbf{A} ?
[6]
(c) Based on your answers to (a) and (b), what is the inverse of \mathbf{A} ?
2. (a) Let $a, b \in \mathfrak{R}$, and $i=\sqrt{-1}$. Express $\frac{1}{a+i b}$ in the form $c+i d$, where $c, d \in \mathfrak{R}$.
(b) What is Euler's formula?
(c) Using Euler's formula, find the three cube roots of 8, in polar form, and plot them in the complex plane.
(d) Convert the answers to (c) from polar form into the form $a+i b$, where $a, b \in \mathfrak{R}$.
[3]
3. Let $A=\left[\begin{array}{cc}0 & -1 \\ i & 1+i\end{array}\right]$, where $i=\sqrt{-1}$.
(a) What is the characteristic polynomial of A?
(b) What are the eigenvalues of A ?
(c) What are the eigenvectors corresponding the eigenvalues found in (b)?
4. (a) Define the algebraic multiplicity of an eigenvalue.
(b) Define the geometric multiplicity of an eigenvalue.
[2]
(c) State a necessary and sufficient condition for diagonalizability in terms of these two concepts.
5. Let $A=\left[\begin{array}{ccc}0 & 0 & 0 \\ 0 & 2 & -2 \\ 0 & -1 & 1\end{array}\right]$. Find the eigenvalues of \mathbf{A} and their multiplicities (both algebraic and geometric). Is A diagonalizable?

6 Let $\mathbf{B}=\left[\begin{array}{ccc}0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 1\end{array}\right]$. Find the eigenvalues of \mathbf{B} and their multiplicities (both algebraic and geometric). Is B diagonalizable?
[8]
7. Consider the following conjecture:

If \boldsymbol{A} is an n by n real symmetric matrix with distinct eigenvalues, then \boldsymbol{A} is invertible.
Prove this conjecture to be false.
8. (a) Find a basis for the orthogonal complement in \Re^{4} of the space $\mathbf{W}=s p([1,-1,1,1],[1,1,1,1])$.
(b) Using the Gram-Schmidt process, find an orthogonal basis for \mathbf{W}.

