Mathematics 251-3 (Fall 1996)

Old Final Exam from Dr. Ryeburn

Thursday, December 5, 1996

1. Does $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{4}-y^{4}}{x^{4}+y^{4}}$ exist? If it exists, what is its value?

Do not give an $\varepsilon-\delta$ argument, but support your conclusions with convincing reasoning. You may use any theorems discussed in the course.
2. The distance A between $(2,1,1)$ and $(5,-5,-1)$ is exactly 7 . Use differentials to give a close approximation to the distance D between (2.01,1.02, 0.98) and (5.03,- $5.01,-1.02$) involving indicated sums, differences, products, or quotients but without using square roots. Your answer should be ready for the use of a cheap calculator that can add, subtract, multiply, and divide, but you should not make any actual arithmetical calculations you would ordinarily do on such a calculator. Think! Don't make this a six-variable question!
3. Let T be the closed bounded triangular region in the xy-plane whose vertices are $(0,0),(-1,0)$, and $(0,-3)$. Let $f(x, y)=x^{2}-2 x y+y^{2}-4 x+4 y+7$.
Maximize and minimize $f(x, y)$ throughout T. Make your reasoning clear!
4. Use the method of Lagrange multipliers to find the absolute maximum and minimum values of the function $f(x, y)=x^{2}+4 x+y^{2}+6 y$ subject to the constraint $x^{2}-4 x+y^{2}=21$. (The constraint condition defines a circle - a closed, bounded set.)
Note: There are many other ways to answer this question. No credit will be given unless the method of Lagrange multipliers is used.
5. If $f(x, y)=2 x^{2}+16 x y-y^{3}+32 y^{2}+300 y$, find and classify all critical points of the function $f(x, y)$.
6. (a) In what direction does the function $f(x, y)=2 x^{2}+16 x y-y^{3}+32 y^{2}+300 y$ of Question 5 increase most rapidly at the point $(0,10)$?
(b) How rapidly does $f(x, y)=2 x^{2}+16 x y-y^{3}+32 y^{2}+300 y$ increase in its direction of most rapid increase, at $(0,10)$?
(c) How rapidly does $f(x, y)=2 x^{2}+16 x y-y^{3}+32 y^{2}+300 y$ increase in the direction towards $(-3,14)$ at $(0,10)$?
7. I want to make a box, with bottom but no top, in the shape of a rectangular parallelepiped. The box is to have volume $375 \mathrm{~m}^{3}$. The material used for the bottom costs $\$ 12$ per square metre and the material used for the four vertical faces costs $\$ 2$ per square metre. What dimensions give the cheapest box?
(You should find only one critical point; you need not verify that it provides a minimum.)
8. Find the surface area of the portion of the paraboloid $z=20-x^{2}-y^{2}$ between the planes $z=4$ and $z=11$.
9. Evaluate the integral $\int_{-4}^{4} \int_{-\sqrt{16-x^{2}}}^{\sqrt{16-x^{2}}}\left(x^{2}+y^{2}\right)^{100} d y d x$.
10. Evaluate the integral $\int_{0}^{3} \int_{2 x}^{6} x y \cos \left(y^{4}\right) d y d x$.
11. Let C be the closed curve consisting of the line segment from $(0,0,0)$ to $(1,1,5)$, followed by the line segment from $(1,1,5)$ to $(0,1,5)$, followed by the portion of the parabola $\mathbf{r}(\mathrm{t})=(1-\mathrm{t}) \mathbf{j}+\left(5-5 \mathrm{t}^{2}\right) \mathbf{k}$ from $(0,1,5)$ to $(0,0,0)$.

Evaluate the line integral $\int_{C} e^{y z} d x+x z e^{y z} d y+x y e^{y z} d z$.
12. Let C be the closed curve consisting of the line segment from $(0,0)$ to $(5,0)$, followed by the quarter of the circle $x^{2}+y^{2}=25$ from $(5,0)$ to $(0,5)$, followed by the line segment from $(0,5)$ to $(0,0)$.

Evaluate the line integral $\int_{C}\left(2 x y^{2}+y\right) d x+\left(2 x^{2} y-x\right) d y$.

