
Mathematics 251–3 (Fall 1996)

Old Final Exam from Dr. Ryeburn

Final Examination Answers Thursday, December 5, 1996

1. Does  lim
(x,y) →(0,0)

x4− y4

x4+ y4   exist? If it exists, what is its value?

Do not give an ε-δ argument, but support your conclusions with convincing reasoning.
You may use any theorems discussed in the course.

If  lim
(x,y) →(0,0)

x 4 − y 4

x 4 +y 4   existed then along any line  y = kx

we would get the same value for  lim
x→ 0

x 4 − k 4x 4

x 4 +k 4x 4 .

But the latter limit is  1− k 4

1+k 4 ,   dependent on  k.

So  lim
(x,y) →(0,0)

x 4 − y 4

x 4 +y 4   does not exist.



Old Math 251 Mid-Term from Dr. Ryeburn's Fall 1996 Class - Answers Page 2

2. The distance  A  between  (2,1,1)   and  (5, −5, −1)  is exactly  7.
Use differentials to give a close approximation to the distance  D  between
(2.01,1.02, 0.98)  and  (5.03,− 5.01, −1.02)   involving indicated sums, differences,
products, or quotients but without using square roots. Your answer should be ready
for the use of a cheap calculator that can add, subtract, multiply, and divide, but you
should not make any actual arithmetical calculations you would ordinarily do on such a
calculator. Think! Don’t make this a six-variable question!

A = (5 − 2)2 + (− 5 −1)2 + (−1− 1)2 = 32 + (− 6)2 + (−2)2 = 49 = 7.

D = (5.03 − 2.01)2 + (− 5.01−1.02)2 + (−1.02 − 0.98)2 = 3.022 + (− 6.03)2 + (−2)2 .

Let  f(x,y) = x2 + y2 + 4 ,   so that  A = f(3, −6)   and  D = f(3.02, −6.03).
Since we want to approximate  f(3.02, −6.03),   put  x = 3,   y = − 6,
dx = 0.02,   and  dy = − 0.03.
∂f
∂x = x

x 2 + y2 +4
,   so  ∂f

∂x (3, −6) = 3
7 .

∂f
∂y = y

x 2 + y2 +4
,   so  ∂f

∂y (3, −6) = − 6
7 .

Thus  df(3, −6, 0.02, − 0.03) = 3
7 ⋅0.02 − 6

7 ⋅(−0.03) = 0.24
7 ,

and  D ≈ 7 + 0.24
7 ,   giving the requested approximation.

My calculator approximates  7 + 0.24
7   as  7.034285714.

3.022 + (−6.03)2 + (− 2)2 = 9.1204 + 36.3609 + 4 = 49.4813 ≈ 7.034294563,

so the approximation is excellent. In fact  ∆f −df
dx 2 +dy2

≈ 0.000245421.
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3. Let  T  be the closed bounded triangular region in the xy-plane whose vertices
are  (0,0),   (−1,0),  and  (0, −3).   Let  f(x,y) = x2 − 2xy + y2 − 4x + 4y +7.
Maximize and minimize  f(x,y)   throughout  T.  Make your reasoning clear!

∂f
∂x = 2x − 2y − 4   and  ∂f

∂y = − 2x + 2y + 4

so to find the critical points we equate these
to zero and solve for  x  and  y.

x

y

(0, 0)

(0, −3)

(−1, 0)

x −y −2 = 0

(0, −2)(− 0.25, −2.25)

T

Unfortunately  ∂f
∂y = − ∂f

∂x   so the resulting

system of two equations in two unknowns
has infinitely many solutions! All  x  and  y
have to do is to satisfy  x − y = 2.   There are
infinitely many points in the plane where that
condition holds; there are even infinitely many
of them inside our triangle, along the line
segment between  (−1 4 , −9 4)  and  (0, −2).
∂2 f
∂x 2 = 2,   ∂2 f

∂y 2 = 2,   ∂2 f
∂y∂x = ∂ 2f

∂x∂y = − 2,   so

∂2 f
∂x 2

∂ 2f
∂y 2 − ∂ 2f

∂y∂x( )2

= 0,   telling us nothing

about these points.

A bit of algebra can rescue us.

f(x,y) = (x − y)2 − 4(x − y) + 7 = (x − y) − 2( )2 + 3   clearly has an
absolute minimum value of  3  everywhere along the line  x − y = 2.
The minimum value,  3,  of  f(x,y)   within the triangular region  T  occurs
everywhere along the line segment between  (−1 4 , −9 4)  and  (0, −2).

To find the maximum we must look along the boundary of  T.
On the segment between  (−1, 0)   and  (0, 0),   we have
f(x,0) = x2 − 4x + 7 = (x − 2)2 + 3  so the maximum value along this
segment is obtained by taking  x  as far as possible from  2,   and is
f( −1,0) = 12.
On the segment between  (0, 0)  and  (0, −3),   we have
f(0, y) = y2 + 4y + 7 = (y + 2)2 + 3  so the maximum value along this
segment is obtained by taking  y  as far as possible from  −2,   and is
f(0, 0) = 7.
On the segment between  (−1, 0)   and  (0, −3),   where  y = − 3x − 3,

f(x,y) = (x − y) − 2( )2 + 3 = x − (−3x − 3) − 2( )2 + 3 = (4x + 1)2 + 3
so the maximum value along this segment is obtained by taking  x  as far
as possible from  −1 4 ,  and is  f( −1,0) = 12.
The maximum value of  f(x,y)   within the triangular region  T  is
f( −1,0) = 12.
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4. Use the method of Lagrange multipliers to find the absolute maximum and
minimum values of the function  f(x,y) = x2 + 4x + y2 + 6y   subject to the constraint
x2 − 4x + y2 = 21.  (The constraint condition defines a circle — a closed, bounded set.)

Note: There are many other ways to answer this question. No credit will be given unless
the method of Lagrange multipliers is used.

The constraint condition can be written as  x2 − 4x + 4 + y2 = 25,  or
(x − 2)2 + y2 = 52 ,   a circle with centre  (2, 0)  and radius  5.
Since  f(x,y) = x2 + 4x + y2 + 6y   is continuous, it must have absolute
maximum and minimum values somewhere on this circle.
Let  g(x, y) = x2 − 4x + y2,   so that our constraint is  g(x, y) = 21.
∇g(x, y) = (2x − 4)i + 2y j = 2(x − 2)i + 2y j ≠ 0   on the circle
(x − 2)2 + y2 = 52 ,   so we check  ∇f(x, y) = λ∇g(x,y).
∇f(x, y) = (2x + 4)i + (2y + 6) j = λ (2x − 4)i + 2y j( ) .
We must solve  2x + 4 = λ(2x − 4)  and  2y + 6 = λ(2y),
subject to the condition  x2 − 4x + y2 = 21.
Multiplying the first equation by  2y   and the second by  2x − 4 ,
(2x + 4)(2y) = λ(2x − 4)(2y) = (2y + 6)(2x − 4).
Eliminating the middle expression,  (2x + 4)(2y) = (2y + 6)(2x − 4).
This simplifies to  8y = 12x − 8y − 24,   so  y = 0.75(x − 2).
Substituting this into the constraint equation  (x − 2)2 + y2 = 52 ,

we obtain  16
9 y2 + y2 = 25,   so  25

9 y2 = 25,   y2 = 9,   and  y = ± 3.

Since  x = 2 + 4
3 y,   our points are  (−2, − 3)  and  (6,3).

f( −2, − 3) = −13  gives the minimum value and  f(6, 3) = 87   gives the
maximum value.

Actually the question can be answered (but not
for credit!) geometrically.

x

y

(2, 0)

(6, 3)

(−2, −3)

(x − 2)2 + y2 = 52

f(x,y) = x2 + 4x + y2 + 6y =
= (x + 2)2 + (y + 3)2 −13  is  13  less than the
square of the distance from the point  (−2, − 3)
to the point  (x, y).
This will be minimized by getting as close as
possible to  (−2, − 3)  and will be maximized
by getting as far as possible from  (−2, − 3).
The point  (−2, − 3)  however is actually on
our constraint circle  (x − 2)2 + y2 = 52 ,   so we minimize  f(x,y)   by being there.
We maximize  f(x,y)   by being at the diametrically opposite point  (6,3).
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5. If  f(x,y) = 2x2 + 16xy − y3 + 32y2 + 300y,   find and classify all critical points of the
function  f(x,y).

∂f
∂x = 4x + 16y = 4(x + 4y)   and  ∂f

∂y = 16x − 3y2 + 64y +300.

Equating  ∂f
∂x   to zero,  x = − 4y.

Substituting this into  ∂f
∂y   and equating the result to zero,

−3y2 + 300 = 0,   so  y2 = 100   and  y = ±10.
The critical points are  (40, −10)   and  (− 40,10).
∂2 f
∂x 2 = 4,   ∂2 f

∂y 2 = − 6y +64,   and  ∂2 f
∂x∂y = ∂ 2f

∂y∂x = 16,   so

D = ∂ 2f
∂x2

∂2 f
∂y2 − ∂ 2 f

∂x∂y( )2

= −24y.

D(40, −10) = 240 > 0,   ∂2 f
∂x 2 (40, −10) = 4 > 0,   and  ∂2 f

∂y 2 (40, −10) = 124 > 0,

so  f(40, −10) = −2000   is a local minimum value.
D(− 40,10) = − 240 < 0,   so there is a saddle point at  (− 40,10).

Algebraists can write  f(x,y) = 2(x + 4y)2 + (20 − y)(y + 10)2 − 2000.
2(x + 4y)2   cannot ever be any smaller than its zero value at  (40, −10).
Near  (40, −10)   the factor  (20 − y)   stays positive so the term
(20 − y)(y + 10)2   cannot be any smaller than its zero value at  (40, −10)
unless we move far enough away to make  y > 20.
So the remaining term  − 2000   provides the local minimum value there.

Likewise  f(x,y) = 2(x + 4y)2 − (20 + y)(y − 10)2 + 2000.
Near  (− 40,10)   the factor  (20 + y)   stays positive.
If we move away from  (− 40,10)   in either direction along the line
x + 4y = 0   the first term  2(x + 4y)2   stays at zero but the second term
−(20 + y)(y −10)2   becomes more negative as we recede, for a while.
(It will not do this forever; it will become positive if  y < − 20.)
If we move away from  (− 40,10)   in either direction along the line
y = 10   the second term  −(20 + y)(y −10)2   stays at zero but the first term
2(x + 4y)2   becomes more positive as we recede.
The function value at this saddle point is the remaining term  2000.
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6. (a) In what direction does the function  f(x,y) = 2x2 + 16xy − y3 + 32y2 + 300y   of
Question 5 increase most rapidly at the point  (0,10)?

∇f(x, y) = (4x +16y)i + (16x − 3y2 + 64y + 300) j  so
∇f(0,10) = 160i + 640 j = 160(i + 4 j).

A unit vector in this direction is  u = 1
17

i + 4
17

j.

This is the direction in which  f(x,y)   increases most rapidly at  (0,10).

(b) How rapidly does  f(x,y) = 2x2 + 16xy − y3 + 32y2 + 300y   increase in its
direction of most rapid increase, at  (0,10)?

∇f(0,10) = 160i + 640j = 160(i + 4 j) = 160 12 + 42 =160 17
is the rate of increase of  f(x,y)   in the direction of most rapid increase,
at the point  (0,10).

(c) How rapidly does  f(x,y) = 2x2 + 16xy − y3 + 32y2 + 300y   increase in the
direction towards  (−3,14)   at  (0,10)?

The direction in question is that of the vector  (−3i +14 j) − 10 j = −3i + 4j .

A unit vector in this direction is  v = − 3
5 i + 4

5 j .

Dvf(0,10) = ∇f(0,10) ⋅ v = (160i + 640j) ⋅ − 3
5 i + 4

5 j( ) = 416   gives the

rate of increase of  f(x,y)   in the direction towards  (−3,14)   at  (0,10).
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7. I want to make a box, with bottom but no top, in the shape of a rectangular
parallelepiped. The box is to have volume 375m3 . The material used for the bottom
costs $12 per square metre and the material used for the four vertical faces costs $2
per square metre. What dimensions give the cheapest box?

(You should find only one critical point; you need not verify that it provides a minimum.)

Let the box have width  x,  length  y,  and height  z,  each measured in

metres. Then  xyz = 375  so  z = 375
xy   and the cost of the material is

C(x, y) = 12 ⋅ xy + 2 ⋅ 2 ⋅xz + 2 ⋅ 2 ⋅ yz = 12xy + 1500
y + 1500

x .
∂C
∂x = 12y − 1500

x 2   and  ∂C
∂y = 12x − 1500

y2 .

Equating these partial derivatives to zero,  x2y = 125 = y2x.
Consequently  (xy)3 = x3y3 = 1252 = 253 ,  so  xy = 25
and finally  x = 5 = y.

The box should have a square base 5 metres on a side,
and should be 15 metres high.

It is clear that very high, or very wide, or very long boxes will be very
expensive, so this unique critical point must give an absolute minimum.

Note that the base of our cheapest box will then cost $300, and each
vertical face will cost $150 so that each pair of parallel vertical faces will
together also cost $300. We are being dimensionally fair in our allocation
of money.

One could alternatively eliminate  y  in favour of  x  and  z  (or  x  in
favour of  y  and  z),  but the algebra would be uglier.

Another way to answer this question is to use Lagrange multipliers.
We wish to minimize  K(x, y, z) = 12xy + 4xz + 4yz   subject to the
constraint  G(x, y, z) = xyz = 375.
First note that  ∇G(x,y, z) = yzi + xzj + xyk ≠ 0   if  xyz = 375.
∇K(x, y, z) = (12y + 4z) i + (12x + 4z) j +(4x + 4y) k.
To have  ∇K(x, y, z) = λ∇G(x, y, z)  and  G(x, y, z) = 375   we solve
12y + 4z = λyz,   12x + 4z = λxz,   4x + 4y = λxy,   xyz = 375.
Multiplying the first equation by  x,  the second by  y,  and the third by  z
and then comparing, we see that  12xy + 4xz = 12xy + 4yz = 4xz + 4yz.
Since none of  x,  y,  or  z  can be zero (their product is 375),
it follows that  x = y   and  z = 3x = 3y.
Substituting into  xyz = 375,   3x3 = 375  so  x = y = 5  and  z =15.

Again the box height should be 15 metres and its square base should be
5 metres on a side.
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8. Find the surface area of the portion of the paraboloid  z = 20 − x2 − y2   between the
planes  z = 4   and  z = 11.

The paraboloid meets the plane  z = 4   where  x2 + y2 = 16   and  z = 4.
The paraboloid meets the plane  z =11  where  x2 + y2 = 9   and  z =11.

∂z
∂x = − 2x   and  ∂z

∂y = − 2y   so  1 + ∂z
∂x( )2

+ ∂z
∂y( )2

= 1+ 4x2 + 4y2 = 1 + 4r 2( )1 2
.

The surface area is  S = 1 + 4r2( )12
rdr

3

4

∫ dθ
0

2 π

∫ = 1
12 1 + 4r2( )3 2 ]3

4
dθ

0

2 π

∫ =

= 65 65 − 37 37
12 dθ

0

2 π

∫ = 65 65 −37 37
12 θ 

 0
2 π

= 65 65 −37 37
6 π .
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9. Evaluate the integral  x2 + y2( )100
dy

− 16 − x2

16− x 2

∫− 4

4

∫ dx.

The region of integration is a circular disk of radius 4 with centre the
origin.

x2 + y2( )100
dy

− 16 − x 2

16 −x 2

∫− 4

4

∫ dx= r2( )100
rdr

0

4

∫0

2 π

∫ dθ= r201 dr
0

4

∫0

2 π

∫ dθ=

= r 202

202]0

4

0

2 π

∫ dθ= 4202

2020

2 π

∫ dθ= 4 202

202 θ]0

2 π
= 4 202

101 π.
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10. Evaluate the integral  xycos y4( )dy
2x

6

∫0

3

∫ dx.

y
=

2x

y = 6

x
=

0

(3, 6)(0, 6)

x

y
Interchanging the order of integration,

xycos y4( )dy
2x

6

∫0

3

∫ dx = xycos y4( )dx
0

y 2

∫0

6

∫ dy =

=
0

6

∫ 1
2 x2ycos y4( )]0

y 2
dy =

0

6

∫ 1
8 y3 cos y4( )dy=

= 1
32 sin y4( )]0

6
= 1

32 sin1296.
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11. Let  C  be the closed curve consisting of the line segment from  (0,0, 0)   to
(1,1, 5),  followed by the line segment from  (1,1, 5)   to  (0,1, 5),  followed by the portion
of the parabola  r(t) = (1− t) j+ (5 − 5t2)k   from  (0,1, 5)  to  (0,0, 0).

Evaluate the line integral  eyz dx + xzeyz dy + xyeyz dz
C∫ .

On the segment  C1   from  (0, 0,0)   to  (1,1,5)   we can write
x = t ,   y = t ,   z = 5t,   0 ≤ t ≤ 1.

eyz dx + xze yz dy + xyeyz dz
C1

∫ = e5t 2 ⋅1 + 5t2e5t 2 ⋅1 + t2e5t 2 ⋅5[ ]dt
0

1

∫ =

= 10t 2 +1( )e5t2 dt
0

1

∫ = te5t 2 ]0

1
= e5 .

On the segment  C2   from  (1,1,5)   to  (0,1,5)   we can write
x = 1 − t,   y = 1,   z = 5,   0 ≤ t ≤ 1.

eyz dx + xzeyz dy + xyeyz dz
C2

∫ = e5 ⋅(−1) + 5 ⋅(1− t)e5 ⋅ 0 +1 ⋅(1− t)e 5 ⋅ 0[ ]dt
0

1

∫ =

= − e5t]0

1 = −e5 .

On the parabola portion  C3   from  (0,1,5)   to  (0, 0,0)   we can write
x = 0,   y = 1 − t,   z = 5 − 5t2 ,  0 ≤ t ≤ 1.

eyz dx + xzeyz dy + xyeyz dz
C3

∫ =

= e (1−t)(5− 5t 2 ) ⋅ 0 + 0 ⋅ e(1− t)(5 − 5t2 ) ⋅(−1)+ 0 ⋅ e (1−t)(5− 5t 2 ) ⋅(−10t)[ ]dt
0

1

∫ = 0.

Summing the contributions over  C1 ,   C2 ,   and  C3 ,

eyz dx + xzeyz dy + xyeyz dz
C∫ = 0.

This is the hard way to answer the question.
Instead, observe that  eyz dx + xzeyz dy + xyeyz dz = d(xeyz ).
Since  C  begins and ends at  (0, 0,0)   we have

eyz dx + xzeyz dy + xyeyz dz
C∫ = xeyz] (0, 0,0)

(0,0,0)
= 0.
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12. Let  C  be the closed curve consisting of the line segment from  (0,0)   to  (5,0),
followed by the quarter of the circle  x2 + y2 = 25   from  (5,0)   to  (0,5),   followed by the
line segment from  (0,5)   to  (0,0).

Evaluate the line integral  2xy2 + y( ) dx + 2x2y − x( )dy.
C∫

y

x

x 2
+y 2

=
25

(0, 5)

(5, 0)

D

C1

C2

C3

On the segment  C1   from  (0, 0)  to  (5,0)
we can write  x = t ,   y = 0,   0 ≤ t ≤ 5.

2xy2 + y( )dx + 2x2 y − x( )dy
C1

∫ =

= 0 ⋅1 − t ⋅ 0( ) dt
0

5

∫ = 0dt
0

5

∫ = 0.

On the arc  C2   from  (5,0)   to  (0, 5)
we can write  x = 5cost,   y = 5sint,   0 ≤ t ≤ π 2.

2xy2 + y( )dx + 2x2y − x( )dy
C2

∫ =

= 250costsin 2 t + 5sint( )⋅ (− 5sint) + 250cos2 tsint − 5cost( )⋅(5cost)[ ]dt
0

π 2

∫ =

= − 1250costsin 3 t − 25sin2 t + 1250cos3 tsint − 25cos2 t[ ]dt
0

π 2

∫ =

= 1250costsint cos2 t − sin2 t( ) − 25 cos2 t + sin2 t( )[ ]dt
0

π 2

∫ =

= 625sin(2t)cos(2t) − 25[ ]dt
0

π 2

∫ = 156.25sin2 (2t) − 25t( )]
0

π 2
= −12.5π .

On the segment  C3   from  (0, 5)  to  (0, 0)  we can write
x = 0,   y = 5 − t,   0 ≤ t ≤ 5.

2xy2 + y( )dx + 2x2y − x( )dy
C3

∫ = (5 − t) ⋅ 0 + 0 ⋅ (−1)[ ] dt
0

5

∫ = 0dt
0

5

∫ = 0.

Summing the contributions over  C1 ,   C2 ,   and  C3 ,

2xy2 + y( )dx + 2x2y − x( )dy
C∫ = −12.5π .

This is the hard way to answer the question.
Using Green’s Theorem instead, let  D  be the sector inside  C.

Since  ∂
∂x 2x2y − x( ) − ∂

∂y 2xy2 + y( ) = (4xy − 1)− (4xy + 1) = −2,

2xy2 + y( )dx + 2x2y − x( )dy
C∫ = (−2)dA

D∫∫ = (− 2)rdr
0

5

∫ dθ
0

π 2

∫ =

= − r2( )]0

5
dθ

0

π 2

∫ = (− 25)dθ
0

π 2

∫ = (−25θ)]0

π 2
= −12.5π.


