Math 251, Calculus III
 J. Hebron, Fall 1999

 Mid-Term Examination \#1

 Mid-Term Examination \#1}

Wednesday, Oct 6th, 1999

Marks

Total mark out of [100]

1. Consider the space curve defined by the following:

$$
\begin{aligned}
& x=e^{t} \cos t \\
& y=e^{t} \sin t \\
& z=0
\end{aligned}
$$

and assume there is a particle moving along this curve as a function of time t.
(a) Sketch the curve.
(b) Find the velocity vector and its magnitude.
(c) Find the acceleration vector and its magnitude
(d) What is the unit tangent vector $\overrightarrow{\mathbf{T}}$?
(e) What is the unit normal vector $\overrightarrow{\mathbf{N}}$?
(f) What is the curvature of the curve?
(g) What is the magnitude of the tangential component of acceleration vector?
(h) What is the magnitude of the normal component of acceleration vector?
(i) What is the arc length from $t=0$ to $t=1$?
2. Find an equation of the plane that passes through the point $(1,6,-4)$ and contains the line described by $x=1+2 t, y=2-3 t, z=3-t$.
3. What is the vector identity for $\overrightarrow{\mathbf{A}} \times(\overrightarrow{\mathbf{B}} \times \overrightarrow{\mathbf{C}})$? Verify this identity for $\overrightarrow{\mathbf{A}}=\langle-4,0,3\rangle$, $\overrightarrow{\mathbf{B}}=\langle 2,-1,0\rangle, \overrightarrow{\mathbf{C}}=\langle 0,2,5\rangle$.
4. What is the equation of a sphere in cylindrical coordinates?
5. What is the equation of a cylinder in spherical coordinates?
6. What is the volume of a parallelepiped with adjacent edges $P Q, P R$, and $P S$, where $P=(1,1,1), Q=(2,0,3), R=(4,1,7)$, and $S=(3,-1,-2)$?
7. Consider the following surface, as shown from various views:

What is it's equation?
8. Consider the following surface, as shown from various views:

What is it's equation?

