Math 251, Calculus III J. Hebron, Fall 1999 Mid-Term Examination #1

Wednesday, Oct 6th, 1999

Marks

Total mark out of [100]

1. Consider the space curve defined by the following:

 $x = e^{t} \cos t$ $y = e^{t} \sin t$ z = 0

and assume there is a particle moving along this curve as a function of time *t*.

(a) Sketch the curve.	[2]
(b) Find the velocity vector and its magnitude.	[4]
(c) Find the acceleration vector and its magnitude	[4]
(d) What is the unit tangent vector $\vec{\mathbf{T}}$?	[2]
(e) What is the unit normal vector \vec{N} ?	[4]
(f) What is the curvature of the curve?	[2]
(g) What is the magnitude of the tangential component of acceleration vector?	[3]
(h) What is the magnitude of the normal component of acceleration vector?	[3]
(i) What is the arc length from t=0 to t=1?	[3]

2. Find an equation of the plane that passes through the point (1,6,-4) and contains the line described by x = 1 + 2t, y = 2 - 3t, z = 3 - t. [20]

3. What is the vector identity for $\vec{\mathbf{A}} \times (\vec{\mathbf{B}} \times \vec{\mathbf{C}})$? Verify this identity for $\vec{\mathbf{A}} = \langle -4, 0, 3 \rangle$,	
$\vec{\mathbf{B}} = \langle 2, -1, 0 \rangle, \ \vec{\mathbf{C}} = \langle 0, 2, 5 \rangle.$	[20]
4. What is the equation of a sphere in cylindrical coordinates?	[5]
5. What is the equation of a cylinder in spherical coordinates?	[8]
6 What is the volume of a parallelepiped with adjacent edges <i>PO PR</i> and <i>PS</i> wh	ere

6. What is the volume of a parallelepiped with adjacent edges *PQ*, *PR*, and *PS*, where P = (1,1,1), Q = (2,0,3), R = (4,1,7), and S = (3,-1,-2)? [10]

7. Consider the following surface, as shown from various views:

z

0-

-2

-47 8

6

4

ź

ó

х

-2

-4

-6

[5]

-8

8. Consider the following surface, as shown from various views:

What is it's equation?