Mathematics 251–3

Old Mid-Term Exam from Dr. Ryeburn

First Mid-Term Exam

Monday, September 30, 1996

1. In this question $\mathbf{r}(t) = \langle f(t), g(t), h(t) \rangle$ is a three-dimensional vector-valued function of a scalar variable, and a is a real number such that $\mathbf{r}(t)$ is defined in an open interval containing a (i.e., at a, and both to the left and to the right of a).

(a) What does it mean to say that $\mathbf{r}(t)$ is continuous at t = a?

(b) What do we mean by the derivative $\mathbf{r}'(a)$ of $\mathbf{r}(t)$ at t = a?

2. (a) Find either a vector equation or a triple of scalar (parametric) equations for the line L through the points A = (2,5,1) and B = (3,7, -1).

(b) How far is the point (2,10, -3) from this line?

3. (a) Find an equation for the plane P through the points A = (7,0,0), B = (0, -7, -7), and C = (6, -2, 0).

(b) How far is the point (1, -9, 3) from this plane?

- 4. Consider the helix defined by $\mathbf{r}(t) = \langle 3\cos t, 3\sin t, 4t \rangle$.
 - (a) Find the unit tangent vector $\mathbf{T}(t)$.

(b) Find the unit normal vector $\mathbf{N}(t)$.

(c) Find the curvature (t).

(d) Find the arc length for the quarter turn of the helix with $0 mtext{ t} /2$.

5. (a) Prove that if $\mathbf{u}(t) = \langle u_1(t), u_2(t), u_3(t) \rangle$ and $\mathbf{v}(t) = \langle v_1(t), v_2(t), v_3(t) \rangle$ are differentiable vector-valued functions and (t) = $\mathbf{u}(t) \mathbf{v}(t)$ then '(t) = $\mathbf{u}'(t) \mathbf{v}(t) + \mathbf{u}(t) \mathbf{v}'(t)$.

(b) Use part (a) to show that if $\mathbf{u}(t) = \langle u_1(t), u_2(t), u_3(t) \rangle$ is a differentiable vector-valued function such that $|\mathbf{u}(t)| = 1$ for all t, then $\mathbf{u}(t)$ must be orthogonal to $\mathbf{u}'(t)$.