Mathematics 251-3
 Old Mid-Term Exam from Dr. Ryeburn

First Mid-Term Exam
Monday, September 30, 1996

1. In this question $r(t)=\langle f(t), g(t), h(t)\rangle$ is a three-dimensional vector-valued function of a scalar variable, and a is a real number such that $r(t)$ is defined in an open interval containing a (i.e., at a, and both to the left and to the right of a).
(a) What does it mean to say that $r(t)$ is continuous at $t=a$?
(b) What do we mean by the derivative $\mathbf{r}^{\prime}(\mathrm{a})$ of $\mathbf{r}(\mathrm{t})$ at $\mathrm{t}=\mathrm{a}$?
2. (a) Find either a vector equation or a triple of scalar (parametric) equations for the line L through the points $A=(2,5,1)$ and $B=(3,7,-1)$.
(b) How far is the point $(2,10,-3)$ from this line?
3. (a) Find an equation for the plane P through the points $A=(7,0,0)$, $B=(0,-7,-7)$, and $C=(6,-2,0)$.
(b) How far is the point $(1,-9,3)$ from this plane?
4. Consider the helix defined by $\mathbf{r}(\mathrm{t})=\langle 3 \cos t, 3 \sin t, 4 \mathrm{t}\rangle$.
(a) Find the unit tangent vector $\mathbf{T}(\mathrm{t})$.
(b) Find the unit normal vector $\mathbf{N}(\mathrm{t})$.
(c) Find the curvature $\kappa(\mathrm{t})$.
(d) Find the arc length for the quarter turn of the helix with $0 \leq \mathrm{t} \leq \pi / 2$.
5. (a) Prove that if $u(t)=\left\{u_{1}(t), u_{2}(t), u_{3}(t)\right\rangle$ and $v(t)=\left\{v_{1}(t), v_{2}(t), v_{3}(t)\right\}$ are differentiable vector-valued functions and $\phi(t)=\mathbf{u}(t) \cdot \mathbf{v}(\mathrm{t})$ then $\phi^{\prime}(\mathrm{t})=\mathbf{u}^{\prime}(\mathrm{t}) \cdot \mathbf{v}(\mathrm{t})+\mathbf{u}(\mathrm{t}) \cdot \mathbf{v}^{\prime}(\mathrm{t})$.
(b) Use part (a) to show that if $\mathbf{u}(\mathrm{t})=\left\{\mathrm{u}_{1}(\mathrm{t}), \mathrm{u}_{2}(\mathrm{t}), \mathrm{u}_{3}(\mathrm{t})\right\rangle$ is a differentiable vectorvalued function such that $|\mathbf{u}(\mathrm{t})|=1$ for all t , then $\mathbf{u}(\mathrm{t})$ must be orthogonal to $\mathbf{u}^{\prime}(\mathrm{t})$.
