Mathematics 251-3
 Solutions to Dr. Ryeburn's Old Mid-Term Exam

1. In this question $r(t)=\langle f(t), g(t), h(t)\rangle$ is a three-dimensional vector-valued function of a scalar variable, and a is a real number such that $r(t)$ is defined in an open interval containing a (i.e., at a, and both to the left and to the right of a).
(a) What does it mean to say that $r(t)$ is continuous at $t=a$?
$\mathbf{r}(\mathrm{t})$ is continuous at $\mathrm{t}=\mathrm{a}$ means that $\lim _{\mathrm{t} \rightarrow \mathrm{a}} \mathbf{r}(\mathrm{t})=\mathbf{r}(\mathrm{a})$.
Alternatively, it means that each of $f(t), g(t)$, and $h(t)$ are continuous at $\mathrm{t}=\mathrm{a}$.
(b) What do we mean by the derivative $\mathbf{r}^{\prime}(\mathrm{a})$ of $\mathbf{r}(\mathrm{t})$ at $\mathrm{t}=\mathrm{a}$?
$\mathbf{r}^{\prime}(\mathrm{a})=\lim _{\mathrm{h} \rightarrow 0} \frac{\mathbf{r}(\mathrm{a}+\mathrm{h})-\mathbf{r}(\mathrm{a})}{\mathrm{h}}$.
Alternatively, $\mathbf{r}^{\prime}(a)=\lim _{t \rightarrow a} \frac{\mathbf{r}(\mathrm{t})-\mathbf{r}(\mathrm{a})}{\mathrm{t}-\mathrm{a}}$.
Alternatively, $\mathbf{r}^{\prime}(a)=\left\langle f^{\prime}(a), g^{\prime}(a), h^{\prime}(a)\right\rangle$.
2. (a) Find either a vector equation or a triple of scalar (parametric) equations for the line L through the points $A=(2,5,1)$ and $B=(3,7,-1)$.

A direction vector for the line is $\mathbf{w}=\overrightarrow{\mathrm{A}} \overrightarrow{\mathrm{B}}=\langle 1,2,-2\rangle$.
The line has equation $\mathbf{r}(\mathrm{t})=\{2+\mathrm{t}, 5+2 \mathrm{t}, 1-2 \mathrm{t}\rangle$.
Another correct answer is $\mathbf{r}(\mathrm{t})=\langle 3+\mathrm{t}, 7+2 \mathrm{t},-1-2 \mathrm{t}\rangle$,
obtained by starting at $\mathrm{B}=(3,7,-1)$ instead of at $\mathrm{A}=(2,5,1)$.
Other correct answers use nonzero scalar multiples of our direction vector or start at other points on the line.
Corresponding to the vector equation $\mathbf{r}(\mathrm{t})=\langle 2+\mathrm{t}, 5+2 \mathrm{t}, 1-2 \mathrm{t}\rangle$
is the triple of scalar equations $x=2+t, y=5+2 t, \quad z=1-2 t$.
Corresponding to the vector equation $\mathbf{r}(\mathrm{t})=\{3+\mathrm{t}, 7+2 \mathrm{t},-1-2 \mathrm{t}\rangle$ is the triple of scalar equations $x=3+t, y=7+2 t, \quad z=-1-2 t$. Other correct vector equation answers have corresponding correct triples of scalar equations.
(b) How far is the point $(2,10,-3)$ from this line?

Choose a point on the line, for example $\mathrm{A}=(2,5,1)$.
Let \mathbf{v} be the vector $\{0,5,-4\rangle$ from A to the point $(2,10,-3)$.
If D is the distance from $(2,10,-3)$ to the line then $\mathrm{D}=|\mathbf{v}||\sin \theta|$,
where θ is an angle between \mathbf{v} and the line's direction vector $\mathbf{w}=\{1,2,-2\rangle$.
But $|\mathbf{v} \times \mathbf{w}|=|\mathbf{v}\|\mathbf{w}\| \sin \theta|$, and thus $|\mathbf{v}||\sin \theta|=\frac{|\mathbf{v} \times \mathbf{w}|}{|\mathbf{w}|}$.
So $\mathrm{D}=\frac{|\mathbf{v} \times \mathbf{w}|}{|\mathbf{w}|}=\frac{\mid\{0,5,-4|\times(1,2,-2\rangle|}{\left|\left.\right|^{1,2,-2\rangle}\right|}=\frac{\left|\left.\right|^{-2,-4,-5\rangle}\right|}{|\{1,2,-2\rangle|}=\frac{\sqrt{45}}{3}=\sqrt{5}$.
Alternatively, the square of the distance from an arbitrary point $(2+t, 5+2 t, 1-2 t)$ on the line to the point $(2,10,-3)$ is $\mathrm{D}^{2}=\mathrm{t}^{2}+(2 \mathrm{t}-5)^{2}+(4-2 \mathrm{t})^{2}=9 \mathrm{t}^{2}-36 \mathrm{t}+41=9(\mathrm{t}-2)^{2}+5$, which is minimized by taking $t=2$. Thus the closest point on the line is $(4,9,-3)$ which is at distance $\sqrt{5}$ from $(2,10,-3)$.
3. (a) Find an equation for the plane P through the points $A=(7,0,0)$, $B=(0,-7,-7)$, and $C=(6,-2,0)$.

The vectors $\overrightarrow{\mathrm{AB}}=\{-7,-7,-7$) and $\overrightarrow{\mathrm{AC}}=\{-1,-2,0\rangle$ are in the plane and are not parallel, so their cross product $\{-14,7,7\}$ is normal to the plane, and so is its scalar multiple $\mathbf{w}=\{-2,1,1\rangle$. Thus the plane has equation $\{-2,1,1\rangle \cdot\{x-7, y-0, z-0\rangle=0$, or $2 x=y+z+14$.

Here I used $\mathrm{A}=(7,0,0)$ as starting point in the plane. I could have used $\mathrm{B}=(0,-7,-7), \mathrm{C}=(6,-2,0)$, or any other point in the plane. I used $\mathbf{w}=\{-2,1,1\rangle$ as normal vector to the plane. I could have used any non-zero multiple of it.
(b) How far is the point $(1,-9,3)$ from this plane?

Choose a point in the plane, for example $\mathrm{A}=(7,0,0)$. Let \mathbf{v} be the vector $\{-6,-9,3\rangle$ from A to the point $(1,-9,3)$. If D is the distance from $\{1,-9,3\rangle$ to the plane then $\mathrm{D}=|\mathbf{v}||\cos \theta|$ where θ is an angle between \mathbf{v} and the plane's normal vector $\mathbf{w}=\{-2,1,1\}$.
But $\mathbf{v} \cdot \mathbf{w}=|\mathbf{v}\|\mathbf{w}\| \cos \theta|$, and thus $|\mathbf{v} \| \cos \theta|=\frac{|\mathbf{v} \cdot \mathbf{w}|}{|\mathbf{w}|}$.
So $\quad \mathrm{D}=\frac{|\mathbf{v} \cdot \mathbf{w}|}{|\mathbf{W}|}=\frac{\mid\{-6,-9,3 \cdot|\cdot|-2,1,1| |}{|\{-2,1,1\rangle|}=\frac{6}{\sqrt{6}}=\sqrt{6}$.
Alternatively, the plane has equation $2 \mathrm{x}-\mathrm{y}-\mathrm{z}-14=0$, so
$\mathrm{D}=\frac{|2 \cdot 1-(-9)-3-14|}{\sqrt{2^{2}+(-1)^{2}+(-1)^{2}}}=\frac{|-6|}{\sqrt{6}}=\sqrt{6}$.
4. Consider the helix defined by $\mathbf{r}(\mathrm{t})=\langle 3 \cos \mathrm{t}, 3 \sin \mathrm{t}, 4 \mathrm{t}\rangle$.
(a) Find the unit tangent vector $\mathbf{T}(\mathrm{t})$.

$$
\begin{aligned}
& \left.\mathbf{v}(\mathrm{t})=\mathbf{r}^{\prime}(\mathrm{t})=\ell^{\prime}-3 \sin \mathrm{t}, 3 \cos \mathrm{t}, 4\right\rangle . \\
& \mathrm{v}(\mathrm{t})=|\mathbf{v}(\mathrm{t})|=\left|\mathbf{r}^{\prime}(\mathrm{t})\right|=\sqrt{9 \sin ^{2} \mathrm{t}+9 \cos ^{2} \mathrm{t}+16}=\sqrt{9+16}=5 . \\
& \left.\mathbf{T}(\mathrm{t})=\frac{\mathbf{v}(\mathrm{t})}{\mathrm{v}(\mathrm{t})}=\ell^{\prime}-0.6 \sin \mathrm{t}, 0.6 \cos \mathrm{t}, 0.8\right\rangle .
\end{aligned}
$$

(b) Find the unit normal vector $\mathbf{N}(\mathrm{t})$.
$\mathbf{T}^{\prime}(\mathrm{t})=\{-0.6 \cos \mathrm{t},-0.6 \sin \mathrm{t}, 0\rangle$.
$\left|\mathbf{T}^{\prime}(\mathrm{t})\right|=\sqrt{(-0.6 \cos \mathrm{t})^{2}+(-0.6 \sin \mathrm{t})^{2}+0^{2}}=0.6$.
$\mathbf{N}(\mathrm{t})=\frac{\mathbf{T}^{\prime}(\mathrm{t})}{\left|\mathbf{T}^{\prime}(\mathrm{t})\right|}=\{-\cos \mathrm{t},-\sin \mathrm{t}, 0\rangle$.
(c) Find the curvature $\kappa(\mathrm{t})$.
$\kappa(\mathrm{t})=\frac{\left|\mathbf{T}^{\prime}(\mathrm{t})\right|}{\left|\mathbf{r}^{\prime}(\mathrm{t})\right|}=\frac{0.6}{5}=0.12$.
Alternatively $\mathbf{r}^{\prime \prime}(\mathrm{t})=\{-3 \cos \mathrm{t},-3 \sin \mathrm{t}, 0\rangle$ so
$\mathbf{r}^{\prime}(\mathrm{t}) \times \mathbf{r}^{\prime \prime}(\mathrm{t})=\{12 \sin \mathrm{t},-12 \cos \mathrm{t}, 9\rangle$ and
$\kappa(\mathrm{t})=\frac{\left|\mathbf{r}^{\prime}(\mathrm{t}) \times \mathbf{r}^{\prime \prime}(\mathrm{t})\right|}{\mid \mathbf{r}^{\prime}(\mathrm{t})^{3}}=\frac{15}{5^{3}}=0.12$.
(d) Find the arc length for the quarter turn of the helix with $0 \leq \mathrm{t} \leq \pi / 2$.
$\left.\mathrm{L}=\int_{0}^{\pi / 2}\left|\mathbf{r}^{\prime}(\mathrm{t})\right| \mathrm{dt}=\int_{0}^{\pi / 2} 5 \mathrm{dt}=5 \mathrm{t}\right]_{0}^{\pi / 2}=5 \pi / 2$.
5. (a) Prove that if $\mathbf{u}(\mathrm{t})=\left\{\mathrm{u}_{1}(\mathrm{t}), \mathrm{u}_{2}(\mathrm{t}), \mathrm{u}_{3}(\mathrm{t})\right\rangle$ and $\mathbf{v}(\mathrm{t})=\left\{\mathrm{v}_{1}(\mathrm{t}), \mathrm{v}_{2}(\mathrm{t}), \mathrm{v}_{3}(\mathrm{t})\right\rangle$ are differentiable vector-valued functions and $\phi(t)=\mathbf{u}(t) \cdot \mathbf{v}(t)$ then $\phi^{\prime}(\mathrm{t})=\mathbf{u}^{\prime}(\mathrm{t}) \cdot \mathbf{v}(\mathrm{t})+\mathbf{u}(\mathrm{t}) \cdot \mathbf{v}^{\prime}(\mathrm{t})$.

$$
\begin{aligned}
& \phi(t)=\mathbf{u}(t) \cdot \mathbf{v}(t)=u_{1}(t) v_{1}(t)+u_{2}(t) v_{2}(t)+u_{3}(t) v_{3}(t) \text { so } \\
& \phi^{\prime}(t)=u_{1}^{\prime}(t) v_{1}(t)+u_{1}(t) v_{1}^{\prime}(t)+u_{2}^{\prime}(t) v_{2}(t)+u_{2}(t) v_{2}^{\prime}(t)+u_{3}^{\prime}(t) v_{3}(t)+u_{3}(t) v_{3}^{\prime}(t)= \\
& =u_{1}^{\prime}(t) v_{1}(t)+u_{2}^{\prime}(t) v_{2}(t)+u_{3}^{\prime}(t) v_{3}(t)+u_{1}(t) v_{1}^{\prime}(t)+u_{2}(t) v_{2}^{\prime}(t)+u_{3}(t) v_{3}^{\prime}(t)= \\
& =\mathbf{u}^{\prime}(t) \cdot \mathbf{v}(t)+\mathbf{u}(t) \cdot \mathbf{v}^{\prime}(t) .
\end{aligned}
$$

(b) Use part (a) to show that if $\mathbf{u}(\mathrm{t})=\left\{\mathrm{u}_{1}(\mathrm{t}), \mathrm{u}_{2}(\mathrm{t}), \mathrm{u}_{3}(\mathrm{t})\right\rangle$ is a differentiable vectorvalued function such that $|\mathbf{u}(\mathrm{t})|=1$ for all t , then $\mathbf{u}(\mathrm{t})$ must be orthogonal to $\mathbf{u}^{\prime}(\mathrm{t})$.

Take $\mathbf{v}(\mathrm{t})=\mathbf{u}(\mathrm{t})$ in part (a).
Then $\phi(t)=\mathbf{u}(t) \cdot \mathbf{u}(t)=|\mathbf{u}(t)|^{2}=1$ so $\phi^{\prime}(t)=0$.
But $\phi^{\prime}(\mathrm{t})=\mathbf{u}^{\prime}(\mathrm{t}) \cdot \mathbf{u}(\mathrm{t})+\mathbf{u}(\mathrm{t}) \cdot \mathbf{u}^{\prime}(\mathrm{t})=2 \mathbf{u}(\mathrm{t}) \cdot \mathbf{u}^{\prime}(\mathrm{t})$,
so $\mathbf{u}(\mathrm{t}) \cdot \mathbf{u}^{\prime}(\mathrm{t})=0$ and $\mathbf{u}(\mathrm{t})$ must be orthogonal to $\mathbf{u}^{\prime}(\mathrm{t})$.
Notice that the numerical value, 1 , of the constant length is irrelevant.
This will be true for any differentiable vector-valued function whose direction may change but whose length is constant.

