Math 251, Calculus III J. Hebron, Spring 2000 Mid-Term Examination #2

Friday, March 10th, 2000 Time: 55 minutes

Student ID Number

Name (Please underline your family name)

Signature

Instructions:

- Please fill-in the above information in ink.
- Do not open this exam until told to do so.
- No books, no notes, no calculators, no cell phones.
- Please sign the bottom of every page (in case your exam becomes unstapled)

Question #:	1	2	3	4	5	6	7	8	Tot
Mark:									
Out of:	6	6	2	6	10	8	8	4	50

[Mark]

1. Show
$$\lim_{(x,y)\to(0,0)} \frac{3y^2 - 5x^2 - 14xy}{3y^2 - 5x^2}$$
 doesn't exist.

[6]

2. Find the equation for the tangent plane to the surface $ze^{x+y} - cos(xyz) = 0$ at the point (0,0,1).

[6]

3. Assume that the equation $ze^{x+y} - \cos(xyz) = 0$ (from problem 2) implicitly defines z(x, y), where x and y are taken to be the independent variables and z the dependent variable. What are $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ at the point (0,0,1)? [2]

4. Let $f(x,y) = \ln(1+|x|) + \ln(1+|y|)$. Find and classify all critical points.

[6]

5. Let $f(x,y) = (x^2 - 2x)(y - 2)$. Find and classify all critical points.

[10]

6. Using the method of **Lagrange Multipliers** (*no marks will be given for any other method*), find the volume of the largest rectangular box in the first octant with three faces in the coordinate planes and one vertex in the plane $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$, where *a*, *b*, and *c* are positive numbers.

[8]

[8]

8. Let **D** be the quarter-annulus defined in polar coordinates by

$$\mathbf{D} = \left\{ (r,\theta) | 1 \le r \le 2, 0 \le \theta \le \frac{\pi}{2} \right\}. \text{ Find } \iint_{\mathbf{D}} \frac{1}{\sqrt{x^2 + y^2}} dA.$$
[4]