Math 251, Calculus III
J. Hebron, Spring 2000 Mid-Term Examination \#2

Friday, March 10th, 2000
Time: 55 minutes

Student ID Number

Name
(Please underline your family name)

Signature

Instructions:

- Please fill-in the above information in ink.
- Do not open this exam until told to do so.
- No books, no notes, no calculators, no cell phones.
- Please sign the bottom of every page (in case your exam becomes unstapled)

Question \#:	1	2	3	4	5	6	7	8	Tot
Mark:									
Out of:	6	6	2	6	10	8	8	4	50

[Mark]

1. Show $\lim _{(x, y) \rightarrow(0,0)} \frac{3 y^{2}-5 x^{2}-14 x y}{3 y^{2}-5 x^{2}}$ doesn't exist.
2. Find the equation for the tangent plane to the surface $z e^{x+y}-\cos (x y z)=0$ at the point ($0,0,1$).
[6]
3. Assume that the equation $z e^{x+y}-\cos (x y z)=0$ (from problem 2) implicitly defines $z(x, y)$, where x and y are taken to be the independent variables and z the dependent variable. What are $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ at the point $(0,0,1)$?
4. Let $f(x, y)=\ln (1+|x|)+\ln (1+|y|)$. Find and classify all critical points.
5. Let $f(x, y)=\left(x^{2}-2 x\right)(y-2)$. Find and classify all critical points.
6. Using the method of Lagrange Multipliers (no marks will be given for any other method), find the volume of the largest rectangular box in the first octant with three faces in the coordinate planes and one vertex in the plane $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1$, where a, b, and c are positive numbers.
7. Evaluate $\int_{0}^{2} \int_{x / 2}^{1} \sin \left(y^{2}\right) d y d x$.
8. Let \mathbf{D} be the quarter-annulus defined in polar coordinates by $\mathbf{D}=\left\{(r, \theta) \mid 1 \leq r \leq 2,0 \leq \theta \leq \frac{\pi}{2}\right\}$. Find $\iint_{\mathbf{D}} \frac{1}{\sqrt{x^{2}+y^{2}}} d A$.
