- The versions posted below may not be in final form, please see the published versions.
- Some of the preprints are posted on arxiv.org.

[29] I. Chen and P. Salari Sharif. On an explicit correspondence of modular curves. Preprint, 21 pages.

[28] I. Chen and G. Glebov. Chudnovsky-Ramanujan type formulae for the Legendre family. Preprint, 9 pages.

[27] Billerey, N.; Chen, I.; Dieulefait, L.; and Freitas, N. A multi-Frey approach to Fermat equations of signature (r,r,p) . Trans. American Math. Soc., accepted.

[26] Chen, Imin and Glebov, Gleb. On Chudnovsky-Ramanujan type formulae. Ramanujan J., to appear.

[25] Billerey, N.; Chen, I.; Dieulefait, L.; and Freitas, N. A result on the equation x^p + y^p = z^r using Frey abelian varieties. Proc. American Math. Soc. 145 (2017), no. 10, 4111--4117.

[24] Chen, Imin and Lee, Yoonjin. Explicit surjectivity results for Drinfeld modules of rank 2, Nagoya J. Math., to appear.

[23] Bennett, M.; Chen, I.; Dahmen, S.; and Yazdani, S. On the equation a^3 + b^3n = c^2. Acta Arith. 163 (2014), no. 4, 327--343.

[22] Chen, Imin and Kiming, Ian. On the theta operator for modular forms modulo prime powers. Mathematika 62 (2016), Issue 02, 321--336.

[21] Bennett, M.; Chen, I.; Dahmen, S.; and Yazdani, S. Generalized Fermat equations: a miscellany. Int. J. Number Theory 11 (2015), no. 1, 1--28.

[20] Chen, I.; Kiming, I.; and Wiese, G. On modular Galois representations modulo prime powers. Int. J. Number Theory 9 (2013), no. 1, 9--113.

[19] Chen, Imin and Lee, Yoonjin. Explicit isogeny theorems for Drinfeld modules. Pacific J. Math. 263 (2013), no. 1, 87--116.

[18] Chen, Imin and Lee, Yoonjin. Coefficients of exponential functions attached to Drinfeld modules of rank 2. Manuscripta Math. 139 (2012), Issue 1, 123--136.

[17] Bennett, Michael and Chen, Imin. Multi-Frey Q-curves and the Diophantine equation a^2 + b^6 = c^n. Algebra and Number Theory 6 (2012), no.4, 707--730.

[16] Chen, I.; Kiming, I.; and Rasmussen, J.B. On congruences mod p^m between eigenforms and their attached Galois representations. J. Number Theory 130 (2010), no. 3, 608--619.

[15] Chen, Imin. On the equations a^2 - 2 b^6 = c^p and a^2 - 2 = c^p. LMS J. of Comput. and Math. 15 (2012), no. 1, 158--171.

[14] Chen, Imin and Siksek, Samir. Perfect powers expressible as sums of two cubes. J. Algebra 322 (2009), no. 3, 638--656.

[13] Chen, Imin and Lee, Yoonjin. Newton polygons, successive minima, and different bounds for Drinfeld modules of rank 2. Proc. American Math. Soc. 141 (2013), 83--91.

[12] Chen, Imin. On the equation a^2 + b^{2p} = c^5. Acta Arith. 143 (2010), 345--375.

[11] Chen, Imin. On the equation s^2 + y^{2p} = alpha^3. Math. Comp. 77 (2007), no. 262, 1223--1227.

[10] Chen, Imin. A diophantine equation associated to X_0(5). LMS J. of Comput. and Math. 8 (2005), 116--121.

[09] Chen, Imin. Jacobians of modular curves associated to normalizers of Cartan subgroups of level p^n. C. R. Math. Acad. Sci. Paris 339 (2004), no. 3, 187--192.

[08] Chen, I.; Grabitz, M.; and deSmit, B. Relations between jacobians of modular curves of level p^2, J. Th\'eorie des Nombres de Bordeaux 16 (2004), 95--106.

[07] Chen, Imin; and Cummins, Chris. Elliptic curves with non-split mod 11 representation, Math. Comp. 73 (2004), no. 246, 869--880.

[06] Chen, Imin. Surjectivity of mod l representations attached to elliptic curves and congruence primes. Canadian Math. Bull. 45 (2002), no. 3, 337--348.

[05] Chen, Imin. On relations between Jacobians of certain modular curves. J. Algebra 231 (2000), 414--448.

[04] Chen, Imin. Elementary estimates for a certain type of Soto-Andrade sum. Proc. American Math. Soc. 128 (2000), no. 7, 1933--1939.

[03] Chen, Imin. On Siegel's modular curve of level 5 and the class number one problem. J. Number Theory 74 (1999), no. 2, 278--297.

[02] Chen, Imin. The Jacobians of non-split Cartan modular curves. Proc. London Math. Soc. (3) 77 (1998), no. 1, 1--38.

[01] Chen, Imin; and Yui, Noriko. Singular values of Thompson series. In Groups, difference sets, and the Monster (Columbus, OH, 1993), 255--326, Ohio State University Mathematics Research Institute Publications, 4, de Gruyter, Berlin, 1996.