SURJECTIVITY OF MOD ℓ REPRESENTATIONS ATTACHED TO ELLIPTIC CURVES AND CONGRUENCE PRIMES

IMIN CHEN

ABSTRACT. For a modular elliptic curve E/\mathbb{Q} , we show a number of links between the primes ℓ for which the mod ℓ representation of E/\mathbb{Q} has projective dihedral image and congruence primes for the newform associated to E/\mathbb{Q} .

1. Introduction

Let E/\mathbb{Q} be an elliptic curve. Denote by $\overline{\rho}_{E/\mathbb{Q},\ell}:G_{\mathbb{Q}}\to \mathrm{GL}_2(\mathbb{F}_\ell)$ its mod ℓ representation, i.e. the representation obtained by the action of the absolute Galois group $G_{\mathbb{Q}}$ of \mathbb{Q} on the ℓ -torsion points of E/\mathbb{Q} for ℓ prime. Let $S_{E/\mathbb{Q}}=\left\{\ell \text{ prime } \mid \overline{\rho}_{E/\mathbb{Q},\ell} \text{ is not surjective }\right\}$.

Theorem 1.1 (Serre, [13]). The set $S_{E/K}$ is finite if E/K does not have complex multiplication.

In the same paper [13], the following question was asked.

Question 1.2. Is $S_{\mathbb{Q}} = \bigcup_{E/\mathbb{Q}} S_{E/\mathbb{Q}}$ finite as E/\mathbb{Q} runs through elliptic curves without complex multiplication?

This question is usually analyzed according to the nature of the image of $\overline{\rho}_{E/\mathbb{Q},\ell}$. If $\overline{\rho}_{E/\mathbb{Q},\ell}$ is not surjective, then by a classification of the subgroups of $\mathrm{GL}_2(\mathbb{F}_\ell)$ we have that im $\overline{\rho}_{E/\mathbb{Q},\ell}$ is contained the normalizer N' or N of a non-split or split Cartan subgroup, a Borel subgroup B, or a subgroup D with projective image S_4 . The former three subgroups can be conjugated into one of the following standard forms (under the assumption ℓ is odd in case of N'), respectively,

$$N' = \left\{ \begin{pmatrix} \alpha & \lambda \beta \\ \beta & \alpha \end{pmatrix}, \begin{pmatrix} \alpha & \lambda \beta \\ -\beta & -\alpha \end{pmatrix} \mid \alpha, \beta \in \mathbb{F}_{\ell}, (\alpha, \beta) \neq (0, 0) \right\}$$

$$N = \left\{ \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}, \begin{pmatrix} 0 & b \\ a & 0 \end{pmatrix} \mid a, b \in \mathbb{F}_{\ell}^{\times} \right\}$$

$$B = \left\{ \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \mid a, d \in \mathbb{F}_{\ell}^{\times}, b \in \mathbb{F}_{\ell} \right\},$$

where λ is a non-square in $\mathbb{F}_{\ell}^{\times}$.

Date: 1 August 2000.

¹⁹⁹¹ Mathematics Subject Classification. Primary: 11G05, Secondary: 11F80; Torsion points of elliptic curves, Galois representations, congruence primes, Serre tori, grossencharacters, nonsplit Cartan.

This research was supported by CICMA (1998-99) and MPIM (2000).

2

Let $S_{E/\mathbb{Q}}^H = \left\{\ell \text{ prime } \mid \operatorname{im}(\overline{\rho}_{E/\mathbb{Q},\ell}) \subset H\right\}$. For H being conjugate to one of N', N, B, D, one can ask whether $S_{\mathbb{Q}}^H = \bigcup_{E/\mathbb{Q}} S_{E/\mathbb{Q}}^H$ is finite as E/\mathbb{Q} runs through elliptic curves without complex multiplication.

Mazur's [6] results on rational isogenies of prime degree show that

$$S^B_{\mathbb{O}} \subset \{p \text{ prime } | p \leq 37\}.$$

Momose shows [9] that an E/\mathbb{Q} with $\operatorname{im}(\overline{\rho}_{E/\mathbb{Q},\ell})$ contained in a conjugate of N has potentially good reduction at all odd primes if $\ell > 13$. These results rely on studying the associated modular curves and bounding their \mathbb{Q} -rational points via the arithmetic and geometry of their jacobians. Finally, Serre shows that $S^D_{\mathbb{Q}} \subset \{p \text{ prime } | p \leq 13\}$ using local methods (c.f. [6] p. 36).

The case of N' is the most difficult to study using jacobians of modular curves because the jacobians in question do not have a non-trivial quotient with finitely-many \mathbb{Q} -rational points.

In this paper, we investigate more carefully the sets $S_{E/\mathbb{Q}}^N$ and $S_{E/\mathbb{Q}}^{N'}$ for a fixed elliptic curve E/\mathbb{Q} . Under the assumption of modularity we will analyze these sets from the point of view of modular forms.

Remark 1.3. Breuil, Conrad, Diamond and Taylor have recently established the modularity of all elliptic curves over $\mathbb{Q}[1]$ so this assumption is no longer necessary.

We briefly recall one such connection implicit in work of Ribet [10] and Kraus [5]. Suppose E/\mathbb{Q} is such that $\operatorname{im}(\overline{\rho}_{E/\mathbb{Q},\ell})$ is contained in H where H=N',N and ℓ is odd. Let C' and C denote the split and non-split Cartan subgroups which are normalized by N' and N, respectively.

Let $\epsilon_{E/\mathbb{Q},\ell}$ be the character obtained by composing $\overline{\rho}_{E/\mathbb{Q},\ell}$ with the map to the quotients $N/C \cong N'/C' \cong \{\pm 1\}$. The character $\epsilon_{E/\mathbb{Q},\ell}$ is non-trivial in the case H=N' as complex conjugation cannot be sent to an element in C' under $\overline{\rho}_{E/\mathbb{Q},\ell}$. In the case H=N, we may assume without loss of generality that $\epsilon_{E/\mathbb{Q},\ell}$ is non-trivial or else we are back in the H=B case. Thus, the character $\epsilon_{E/\mathbb{Q},\ell}$ cuts out a quadratic extension K of \mathbb{Q} which is imaginary in the case H=N'.

The representation $\overline{\rho}_{E/\mathbb{Q},\ell}\cong\operatorname{Ind}_K^{\mathbb{Q}}\chi$ is induced from a character $\chi:G_K\to\mathbb{F}^\times$, where $\mathbb{F}=\mathbb{F}_{\ell^2}$ or \mathbb{F}_ℓ in the cases H=N' or N, respectively. It thus has the property $\overline{\rho}_{E/\mathbb{Q},\ell}\otimes\epsilon_{E/\mathbb{Q},\ell}\cong\overline{\rho}_{E/\mathbb{Q},\ell}$. The following lemma can then be shown.

Lemma 1.4. Let E/\mathbb{Q} be a modular elliptic curve whose associated newform is $f \in S_2(\Gamma_0(N_E))$. Suppose $\operatorname{im}(\overline{\rho}_{E/\mathbb{Q},\ell}) \subset H$ with H = N', N and ℓ is odd. Let E' be the twist of E by $\epsilon_{E/\mathbb{Q},\ell}$, and let f' be the corresponding twist of $f \in S_2(\Gamma_0(N_E))$. Then $N_{E'} = N_E$ and $f' \in S_2(\Gamma_0(N_E))$ is a newform.

Proof. Kraus shows in [5] that the type of reduction (good, multiplicative, additive) of E and E' are the same, i.e. the tame exponents ϵ_p of E and E' are the same. On the other hand, the wild exponent δ_p of E depends only on the restriction of $\overline{\rho}_{E/\mathbb{Q},\ell}$ and $\overline{\rho}_{E',\ell} = \overline{\rho}_{E/\mathbb{Q},\ell} \otimes \epsilon_{E/\mathbb{Q},\ell}$ to the wild inertia group at p. For $p \geq 3$, the restrictions are the same as $\epsilon_{E/\mathbb{Q},\ell}$ is trivial on the wild inertia at p. For p = 2, the restrictions still have the same image.

We say that two eigenforms $f, g \in S_2(\Gamma_0(N))$ are congruent modulo λ if $a_p(f) \equiv a_p(g) \pmod{\lambda}$ for $p \nmid \ell N$ where λ is a prime above ℓ of $\mathbb{Q}(a_p(f), a_p(g))$. We say that ℓ is a congruence prime for newform $f \in S_2(\Gamma_0(N))$, if there exists an eigenform

g in the (Petersson) orthogonal complement of f such that g is congruent to f modulo λ above ℓ .

The property that $\rho_{E'/\mathbb{Q},\ell} \cong \overline{\rho}_{E/\mathbb{Q},\ell} \otimes \epsilon_{E/\mathbb{Q},\ell} \cong \overline{\rho}_{E/\mathbb{Q},\ell}$ implies the two newforms f, f' are congruent modulo ℓ . Thus the following proposition holds.

Proposition 1.5. Let E/\mathbb{Q} be a modular elliptic curve whose associated newform is $f \in S_2(\Gamma_0(N_E))$. Suppose ℓ is odd and $\operatorname{im}(\overline{\rho}_{E/\mathbb{Q},\ell})$ is contained in N', or N but not C. Then ℓ is a congruence prime for f.

In this paper, we will show that there are additional congruences between f and CM-forms in the case N' and discuss how the character of these CM-forms can be controlled under certain hypotheses.

Theorem 1.6. Let E/\mathbb{Q} be a modular elliptic curve whose associated newform is $f \in S_2(\Gamma_0(N_E))$.

Suppose $\operatorname{im}(\overline{\rho}_{E/\mathbb{Q},\ell}) \subset N'$ for $3 < \ell \nmid N_E$. Then there exists a newform $g \in S_2(\Gamma_1(M))$ which is induced from a grossencharacter on K and is congruent to f modulo λ a prime above ℓ where $M \mid N_E$ is the Artin conductor of $\overline{\rho}_{E/\mathbb{Q},\ell}$.

Theorem 1.7. Let E/\mathbb{Q} be a modular elliptic curve whose associated newform is $f \in S_2(\Gamma_0(N_E))$ and $16 \nmid N_E$. Suppose $\operatorname{im}(\overline{\rho}_{E/\mathbb{Q},\ell}) \subset N'$ for $3 < \ell \nmid N_E$. Then there exists a newform $g \in S_2(\Gamma_0(M))$ which is induced from a grossencharacter on K and is congruent to f modulo λ a prime above ℓ where $M \mid N_E$ is the Artin conductor of $\overline{\rho}_{E/\mathbb{Q},\ell}$.

I would like to thank F. Momose for mentioning to me the connection between elliptic curves with $\operatorname{im}(\overline{\rho}_{E/\mathbb{Q},\ell}) \subset N'$ and grossencharacters on imaginary quadratic fields (c.f. also the paper [8] from which the case of prime power N_E in Theorem 1.7 follows).

2. Congruences with CM-forms

2.1. Algebraic characters. Fix an algebraic closure $\overline{\mathbb{Q}}$ of \mathbb{Q} and an algebraic closure $\overline{\mathbb{Q}}_{\ell}$ of \mathbb{Q}_{ℓ} . Let $K \subset \overline{\mathbb{Q}} \subset \overline{\mathbb{Q}_{\ell}}$ be a number field and denote by D_K the set of embeddings of K into $\overline{\mathbb{Q}}$.

Let $T/\mathbb{Q} = \operatorname{Res}_{\mathbb{Q}}^K(\mathbb{G}_m/K)$ be the restriction of scalars of \mathbb{G}_m/K to \mathbb{Q} . This is a commutative algebraic group over \mathbb{Q} , isomorphic over $\overline{\mathbb{Q}}$ to $\mathbb{G}_m^{[K:\mathbb{Q}]}$, with the following properties.

- (1) $T(\mathbb{Q}) = K^{\times}$ and $T(\mathbb{Q}_{\ell}) = (K \otimes \mathbb{Q}_{\ell})^{\times} = \prod_{v \mid \ell} K_v$
- (2) For all $\sigma \in D_K$, there is an algebraic character $[\sigma]: T/\overline{\mathbb{Q}} \to \operatorname{GL}_1/\overline{\mathbb{Q}}$ such that composite

$$K^{\times} = T(\mathbb{Q}) \subset T(\overline{\mathbb{Q}}) \xrightarrow{[\sigma]} \mathrm{GL}_1(\overline{\mathbb{Q}}) = \overline{\mathbb{Q}}^{\times}$$

is given by the embedding σ .

- (3) Every algebraic homormorphism $f: T/\overline{\mathbb{Q}} \to \operatorname{GL}_1/\overline{\mathbb{Q}}$ is of the form $f = \prod_{\sigma \in D_K} [\sigma]^{n(\sigma)}$ where $n(\sigma) \in \mathbb{Z}$. The element $\sum_{\sigma \in D_K} n(\sigma)\sigma \in \mathbb{Z}[D_K]$ is called the *weight* of f and completely determines f. Given a weight $k \in \mathbb{Z}[D_K]$, let [k] denote the algebraic homomorphism determined by k.
- 2.2. Grossencharacters of type A_0 . Let $K \subset \overline{\mathbb{Q}}$ be a number field. For a place v of K, let K_v be the completion of K at v, π_v a uniformizer of K_v , and \mathcal{O}_v the ring of integers of K_v in the case v is a finite place. Let J_K be the ideles of K

4

and $C_K = J_K/K^{\times}$ the idèle class group. For a modulus \mathfrak{m} of K let $U_{\mathfrak{m}} = \prod_v U_{\mathfrak{m},v}$ where

$$U_{\mathfrak{m},v} = \begin{cases} \ker(\mathcal{O}_v^{\times} \to (\mathcal{O}_v/\mathfrak{m}\mathcal{O}_v)^{\times}) & \text{if } v \nmid \infty \\ \text{the connected component of } 1 & \text{if } v \mid \infty \end{cases}$$

Let $E_{\mathfrak{m}} = \ker(K^{\times} \to J_K/U_{\mathfrak{m}})$ denote the units congruent to 1 modulo \mathfrak{m} , and $C_{\mathfrak{m}} = C/U_{\mathfrak{m}}K^{\times}$ be the ray class group of modulus \mathfrak{m} .

Let $\chi:C_K\to\overline{\mathbb{Q}_\ell}^{\times}$ be a continuous character. This can be written in the form $\chi=\prod_v\chi_v$ where $\chi_v\mid_{\mathcal{O}_v^{\times}}=1$ for all but finitely-many v. The homormorphism $\chi:C_K\to\overline{\mathbb{Q}_\ell}$ is said to be locally algebraic of weight $k\in\mathbb{Z}[D_K]$ if $\chi_\ell=\prod_{v\mid\ell}\chi_v$ coincides with the algebraic character $[-k]:\prod_{v\mid\ell}K_v=T(\overline{\mathbb{Q}_\ell})\to\mathrm{GL}_1(\overline{\mathbb{Q}_\ell})=\overline{\mathbb{Q}_\ell}^{\times}$ of weight -k on the subgroup $\prod_{v\mid\ell}U_{\mathfrak{m},v}$. We say χ has modulus \mathfrak{m} if χ_ℓ coincides with [-k] on $\prod_{v\mid\ell}U_{\mathfrak{m},v}$ and $\chi_v\mid_{U_{\mathfrak{m},v}}=1$ for $v\nmid\ell$. The smallest modulus for χ is called the conductor of χ .

When $\ell = \infty$, a locally algebraic character χ of modulus \mathfrak{m} and weight k coincides with the notion of a grossencharacter of type A_0 of modulus \mathfrak{m} and weight k.

Theorem 2.1 (Weil, [15]). Let χ be a grossencharacter of type A_0 . The extension $\mathbb{Q}(\chi(\pi_v) \mid v \nmid \infty \mathfrak{m})$ is a finite extension of \mathbb{Q} called the field generated by χ .

Proposition 2.2. Let $k \in \mathbb{Z}[D_K]$ be a weight. There exists a non-trivial grossen-character of type A_0 of weight k and modulus \mathfrak{m} if and only if $[k](E_{\mathfrak{m}}) = 1$. If this holds then there are $h_{\mathfrak{m}}$ such grossencharacters where $h_{\mathfrak{m}}$ is the order of the class group $C_{\mathfrak{m}}$.

There is a natural grossencharacter of type A_0 of conductor \mathcal{O}_K and weight $\sum_{\sigma \in D_K} \sigma$. This is given by

$$\omega_K : C_K \to \mathbb{R}^{>0} \subset \mathbb{C}^{\times}$$

$$x \mapsto \prod_v ||x_v||$$

where $||x_v|| = |x_v|^{[K_v:\mathbb{Q}_p]}$ and for p finite, $|\pi_v| = 1/p^{1/e_v}$, and e_v is the ramification index of $v \mid p$. The character ω_K is trivial on K^{\times} by the product formula.

2.3. Fundamental characters. For $v \mid \ell$ let $\overline{K_v}$ be a fixed algebraic closure of K_v . This fixes an algebraic closure $\overline{k_v}$ of the residue field k_v . Let I_{K_v} denote the inertia subgroup of G_{K_v} and $I_{K_v,t}$ its tame quotient.

A character $\overline{\chi}:I_{K_v,t}\to\overline{k_v}^{\times}$ is called a *tame character*. For all $q=\ell^n$, there is a tame character

$$\Theta_{q-1}: I_{K_v,t} \to \mathbb{F}_q^{\times} \subset \overline{k_v}^{\times}$$

called the fundamental tame character of level n which is surjective to \mathbb{F}_q^{\times} .

A tame character is said to have level n if its image is contained in $\mathbb{F}_q^{\times} \subset \overline{k_v}^{\times}$, $q = \ell^n$, but no smaller finite field. The fundamental tame character of level n has the property that any character $\overline{\chi}$ of level $\leq n$ can be expressed as a power of Θ_{q-1} .

Suppose $\overline{\chi}$ is a tame character of level n and $\overline{\chi} = \Theta_{q-1}^a$ with $0 \le a < q-1$. Because of the assumption that $\overline{\chi}$ has level n, not all possible a arise. We may write the integer a uniquely in the form $a = a_0 + a_1 \ell + \ldots + a_{n-1} \ell^{n-1}$ where $0 \le a_i \le \ell - 1$ and hence $\overline{\chi} = \Theta_{q-1}^{a_0} \Theta_{q-1}^{\ell a_1} \ldots \Theta_{q-1}^{\ell^{n-1} a_{n-1}}$.

Let $\overline{\chi}:G_{K_v^{ab}}\to \overline{k_v}^{\times}$ be a character and consider its restriction to $I_{K_v^{ab}}$. This restriction factors to $I_{K_{v,t}^{ab}}$ to yield a tame character $\overline{\chi}$ which we also denote by $\overline{\chi}$. The local class field homomorphism $r_v:K_v^{\times}\to G_{K_v^{ab}}$ induces an isomorphism $k_v^{\times}\cong I_{K_{v,t}^{ab}}$ so that the tame character $\overline{\chi}$ has level $\leq n$ where $q=\ell^n=\#k_v$. We denote by $\overline{\chi}\mid_{k_v^{\times}}$ the character on k_v^{\times} obtained by precomposing the tame character $\overline{\chi}$ with the local class field homomorphism. Let D_{K_v} denote the set of embeddings $\sigma_v:K_v\to\overline{K_v}$. For each such embedding σ_v , let $\overline{\sigma_v}:k_v\to\overline{k_v}$ denote the associated embedding of residue fields. We can therefore write the tame character in the form as above $\overline{\chi}=\prod_{\sigma_v\in D_{K_v}}\Theta_{q-1}^{\overline{\sigma_v}a(\sigma_v)}$ where $0\leq a(\sigma_v)\leq \ell-1$. The element $\sum_{\sigma_v\in D_{K_v}}a(\sigma_v)\sigma_v\in \mathbb{Z}[D_{K_v}]$ is called the optimal weight of $\overline{\chi}$ at v.

A calculation in [13] shows that the composition

$$k_v^\times \cong I_{K_v^{\mathrm{ab}}} \xrightarrow{\Theta_{q-1}} k_v^\times$$

corresponds with the character $x \mapsto x^{-1}$.

3. Adjustment to optimal level and weight

Proposition 3.1. Let $\mathbb{Q} \subset K \subset \overline{\mathbb{Q}}$ be an imaginary quadratic field whose set of embeddings to $\overline{\mathbb{Q}}$ is denoted by $D_K = \{1, \tau\}$. Let $\overline{\chi} : G_K \to \mathbb{F}_{\ell^2}^{\times}$ be a continuous character with Artin conductor \mathfrak{m} and let $\widetilde{\chi} : C_K \to \mathbb{C}^{\times}$ be its Teichmüller lift considered as a continuous character of C_K . Suppose that

- (1) ℓ is inert in K
- $(2) \ \overline{\chi} \mid_{k_{\ell}^{\times}} = \overline{[1]}^{-1}.$

Then there exists a grossencharacter χ of type A_0 with conductor \mathfrak{m} and weight 1 and a prime λ above ℓ in the field generated by $\widetilde{\chi}$ and χ such that $\widetilde{\chi}(\pi_v) \equiv \chi(\pi_v)$ (mod λ) for all $v \nmid \infty \ell \mathfrak{m}$.

Proof. By the global class field homomorphism $r_K: C_K \to G_{K^{\mathrm{ab}}}$ we may regard both $\overline{\chi}$ and $\widetilde{\chi}$ as continuous characters of C_K and can write $\overline{\chi} = \prod_v \overline{\chi}_v$ and $\widetilde{\chi} = \prod_v \widetilde{\chi}_v$ where $\overline{\chi}_v$ and $\widetilde{\chi}_v$ are characters of K_v^{\times} . By comparing $\overline{\chi}_v$ and $\widetilde{\chi}_v$ place by place we see that $\widetilde{\chi}$ has conductor $\mathfrak{m}\ell$ and weight 0.

Let $u \in E_{\mathfrak{m}} = K^{\times} \cap U_{\mathfrak{m}}$. Since $\overline{\chi}$ is trivial on K^{\times} , $\overline{\chi}(u) = 1$. On the other hand, we also have $\overline{\chi} \mid_{k_{\ell}^{\times}} (u) = \overline{[1]}^{-1}(u) = \overline{u}^{-1}$ and $\overline{\chi} \mid_{U_{\mathfrak{m},v}} (u) = 1$ for $v \neq \ell$. Thus, we have that $u \equiv 1 \pmod{\ell}$. As K is imaginary quadratic and $\ell \geq 5$, this implies u = 1.

Since $E_{\mathfrak{m}}$ is trivial, there exists a grossencharacter ϕ of type A_0 with modulus \mathfrak{m} and weight 1. Write $\phi = \prod_v \phi_v$. As ϕ has weight 1, $\phi_{\infty}(z) = \overline{z}$. Let $\delta: J_K \to \overline{\mathbb{Q}_\ell}^{\times}$, $\delta = \prod_v \delta_v$ be defined as follows. For $v \nmid \infty \ell$, let $\delta_v = \phi_v$, and define $\delta_{\infty} = 1$, $\delta_\ell = \phi_v[1]^{-1}$. By construction, δ factors to a character of C_K . Let $\overline{\delta}: C_K \to \overline{\mathbb{F}_\ell}^{\times}$ be the reduction of δ modulo a prime λ' above ℓ of the field generated by δ (which is the same as the field generated by δ), and let $\widetilde{\delta}: C_K \to \mathbb{C}^{\times}$ be the Teichmüller lift of $\overline{\delta}$

The desired grossencharacter of type A_0 is then $\chi = \widetilde{\chi} \widetilde{\delta}^{-1} \phi$. The weight of χ is 1 and it evidently has modulus $\mathfrak{m}\ell$. In fact, χ has conductor \mathfrak{m} . Since $\chi_{\ell} = \widetilde{\chi}_{\ell} \widetilde{\delta}_{\ell}^{-1} \phi_{\ell} = \widetilde{[1]}^{-1} \widetilde{[1]} \widetilde{\phi}_{\ell}^{-1} \phi_{\ell}$ we see that χ_{ℓ} is trivial on $\mathcal{O}_{\ell}^{\times}$. Thus, χ has modulus \mathfrak{m} . To see that χ has conductor precisely \mathfrak{m} , consider the character $\chi: C_K \to \overline{\mathbb{Q}_{\ell}}^{\times}$

given by $\chi = \widetilde{\chi}\widetilde{\delta}^{-1}\delta$ which has the same conductor as χ . Since χ reduces modulo λ to $\overline{\chi}$ having Artin conductor \mathfrak{m} , it follows that \mathfrak{m} divides the Artin conductor of χ as the Artin conductor can only decrease under reduction modulo λ .

For $v \nmid \infty \ell \mathfrak{m}$, $\chi(\pi_v) = \widetilde{\chi}_v(\pi_v) \widetilde{\delta}_v^{-1}(\pi_v) \phi_v(\pi_v) = \widetilde{\chi}_v(\pi_v) \widetilde{\phi}_v^{-1}(\pi_v) \phi_v(\pi_v) \equiv \widetilde{\chi}_v(\pi_v)$ (mod λ) where λ is a prime of the field generated by $\widetilde{\chi}$ and $\widetilde{\delta}$ above λ' .

4. Proof of Theorem 1.6

Let E/\mathbb{Q} be a modular elliptic curve whose associated newform is $f \in S_2(\Gamma_0(N_E))$. Suppose $\operatorname{im}(\overline{\rho}_{E/\mathbb{Q},\ell}) \subset N'$ for $3 < \ell \nmid N_E$. Then $\overline{\rho}_{E/\mathbb{Q},\ell} \cong \operatorname{Ind}_K^{\mathbb{Q}} \overline{\chi}$ is induced from a character $\overline{\chi} : G_K \to \mathbb{F}_{\ell^2}^{\times}$ on the imaginary quadratic field K associated to such a $\overline{\rho}_{E/\mathbb{Q},\ell}$. Since $\ell \nmid N_E$, the argument in [13] p. 317 shows that ℓ is inert in K.

Let us briefly recall the definition of the Serre's optimal weight attached to this particular $\overline{\rho}_{E/\mathbb{Q},\ell}$ [14]. Identifying $G_{\mathbb{Q}_{\ell}}$ with a decomposition subgroup at ℓ of $G_{\mathbb{Q}}$, the restriction of $\overline{\rho}_{E/\mathbb{Q},\ell}$ to $I_{\mathbb{Q}_{\ell}}$ factors through its tame quotient $I_{\mathbb{Q}_{\ell},t}$ and is semi-simple. Since ℓ is unramified in K, $I_{\mathbb{Q}_{\ell}} \subset G_K$ so that

$$\overline{\rho}_{E/\mathbb{Q},\ell}\mid_{I_{\mathbb{Q}_{\ell}}}\cong\begin{pmatrix}\overline{\chi}&0\\0&\overline{\chi}'\end{pmatrix}$$

where $\overline{\chi}'(g) = \overline{\chi}(\tau^{-1}g\tau)$.

6

Both $\overline{\chi}$ and $\overline{\chi}'$ are tame characters of level 2 so that $\overline{\chi}^{\ell} = \overline{\chi}'$. Write $\overline{\chi} = \Theta_{q-1}^{a_0 + \ell a_1}$ where $q = \ell^2 = \# k_v^{\times}$ and $0 \le a_0, a_1 \le \ell - 1$. Since $\overline{\rho}_{E/\mathbb{Q},\ell}$ is induced from either $\overline{\chi}$ or $\overline{\chi}'$, up to switching $\overline{\chi}'$ for $\overline{\chi}$ we may assume a > b. The optimal weight is defined as $k = 1 + a_0 + \ell a_1$. Since $\ell \nmid N_E$, Proposition 4 of [14] implies that k = 2 and so $a_0 = 1, a_1 = 0$ in our situation. Thus, we see that $\overline{\chi} \mid_{k_v^{\infty}} = \overline{[1]}^{-1}$.

Let $\widetilde{\chi}$ be the Teichmüller lift of $\overline{\chi}$. By Proposition 3.1, there exists a grossen-character χ of type A_0 with conductor \mathfrak{m} and weight 1 such that $\chi(\pi_v) \equiv \widetilde{\chi}(\pi_v)$ (mod λ) where λ is a prime above ℓ of the field generated by $\widetilde{\chi}$ and χ .

Let $I(\mathfrak{m})$ denote the group of fractional ideals of K prime to \mathfrak{m} . For an ideal $\mathfrak{a} \in I(\mathfrak{m})$ denote by $[\mathfrak{a}]$ the idèle $\prod_{v \nmid \infty \mathfrak{m}} \pi_v^{e_v}$ associated to the ideal $\mathfrak{a} = \prod_{v \nmid \infty \mathfrak{m}} \mathfrak{p}_v^{e_v}$, \mathfrak{p}_v is the prime of K associated to the finite place v, and π_v is any choice of uniformizer for K_v .

Theorem 4.1 (Hecke). Let $K \subset \overline{\mathbb{Q}}$ be an imaginary quadratic field with discriminant d_K and let $D_K = \{1, \tau\}$ denote its embeddings into $\overline{\mathbb{Q}}$. Let χ be a grossencharacter of type A_0 on K with conductor \mathfrak{m} and weight $k = u \cdot 1 \in \mathbb{Z}[D_K], u > 0$. Consider $g(z) = \sum_{\mathfrak{a} \in I(\mathfrak{m})} \chi([\mathfrak{a}]) q(z)^{N_K(\mathfrak{a})}$ where $q(z) = e^{2\pi i z}$. Then g is a newform on $S_{u+1}(\Gamma_0(M), \xi)$ where $M = N_K(\mathfrak{m}) |d_K|$ and $\xi : (\mathbb{Z}/M\mathbb{Z})^{\times} \to \mathbb{C}^{\times}$ is defined by $\xi = \epsilon_K \frac{\chi_0 \text{Ver}}{\omega_0^{\mathfrak{m}}}$. Here $\epsilon_K : C_{\mathbb{Q}} \to \{\pm 1\}$ is the character defining K and $\text{Ver} : C_{\mathbb{Q}} \to C_K$ is the Verlagerung map.

Proof. c.f. Theorem 4.8.2 [7] (but note Miyake normalizes his grossencharacters so they are unitary) \Box

Let $g(z) = \sum_{\mathfrak{a} \in I(\mathfrak{m})} \chi([\mathfrak{a}]) q(z)^{N_K(\mathfrak{a})} \in S_2(\Gamma_1(M))$ be the newform constructed from χ as in the theorem above. Let $p \nmid \ell M$ be a prime and $\operatorname{Fr}_p \in G_{\mathbb{Q}}$ a Frobenius element at p. If p is inert in K, then $\operatorname{Fr}_p \not\in G_K$ so that $a_p(f) \equiv \operatorname{tr} \overline{\rho}_{E/\mathbb{Q},\ell}(\operatorname{Fr}_p) \equiv \operatorname{tr}(\operatorname{Ind}_K^{\mathbb{Q}} \overline{\chi})(\operatorname{Fr}_p) \equiv 0 = a_p(g) \pmod{\lambda}$. If p is split in K with $v_i \mid p$ being the two places above p, then $\operatorname{Fr}_p \in G_K$ so that $a_p(f) \equiv \operatorname{tr} \overline{\rho}_{E/\mathbb{Q},\ell}(\operatorname{Fr}_p) \equiv \operatorname{tr}(\operatorname{Ind}_K^{\mathbb{Q}} \overline{\chi})(\operatorname{Fr}_p) \equiv$

 $\overline{\chi}(\operatorname{Fr}_p) + \overline{\chi}(\tau \operatorname{Fr}_p \tau^{-1}) \equiv \overline{\chi}(\pi_{v_1}) + \overline{\chi}(\pi_{v_2}) \equiv \chi(\pi_{v_1}) + \chi(\pi_{v_2}) = a_p(g) \pmod{\lambda}.$ Thus, $a_p(f) \equiv a_p(g) \pmod{\lambda}$ for $p \nmid \ell M$.

Lemma 4.2. Let ℓ be a prime which is inert in an imaginary quadratic field $K \subset \overline{\mathbb{Q}}$ with its set of embeddings denoted by $D_K = \{1, \tau\}$. Let $\overline{\chi} : G_K \to \mathbb{F}_{\ell^2}^{\times}$ be a character with Artin conductor $\mathfrak{m}(\overline{\chi})$ prime to ℓ and suppose $\overline{\rho} = \operatorname{Ind}_K^{\mathbb{Q}} \overline{\chi}$ is irreducible. If we denote by $N(\overline{\rho})$ the Artin conductor of $\overline{\rho}$, then

$$N(\overline{\rho}) = (d_K)N_K(\mathfrak{m}(\overline{\chi})).$$

Proof. Let $\widetilde{\chi}: G_K \to L^{\times} \subset \mathbb{C}^{\times}, L = \mathbb{Q}(\zeta_n), n = \ell^2 - 1$ be the Teichmüller lift of $\overline{\chi}$, and let $\widetilde{\rho} = \operatorname{Ind}_K^{\mathbb{Q}} \widetilde{\chi}$. By [12] VI.3 Proposition 6, $N(\widetilde{\rho}) = (d_K)N_K(\mathfrak{m}(\widetilde{\chi})) = (d_K)\ell^2 N_K \mathfrak{m}(\overline{\chi})$.

Let us compare $N(\overline{\rho}) = \prod_{p \neq \ell} p^{\overline{e}_p}$ and $N(\widetilde{\rho}) = \prod_{p \neq \ell} p^{\widetilde{e}_p}$ (as $\ell \nmid N(\widetilde{\rho})$). The quantities \overline{e}_p and \widetilde{e}_p are defined as

$$\overline{e}_{p} = \sum_{i=0}^{\infty} \frac{\#\overline{\rho}(G_{p,i})}{\#\overline{\rho}(G_{p,0})} (2 - \dim \overline{\rho}^{G_{p,i}})$$

$$\widetilde{e}_{p} = \sum_{i=0}^{\infty} \frac{\#\widetilde{\rho}(G_{p,i})}{\#\widetilde{\rho}(G_{p,0})} (2 - \dim \widetilde{\rho}^{G_{p,i}})$$

where $G_{p,i}$ denotes the *i*-th ramification group of a decomposition group at p, indexed so that $G_{p,0}$ is the inertia subgroup at p.

Our aim is to show that $N(\overline{\rho})$ is the prime to ℓ -part of $N(\widetilde{\rho})$ and hence equal to $N(\widetilde{\rho}) = (d_K)N_K(\mathfrak{m}(\overline{\chi}))$. It suffices from the definitions of \overline{e}_p and \widetilde{e}_p to show that $\dim \overline{\rho}^H = \dim \widetilde{\rho}^H$ for any given subgroup H of $G_{\mathbb{Q}}$. Let $\widetilde{V} = L \oplus L\tau$ be the representation space of $\widetilde{\rho}$ and let $\Lambda = \mathcal{O}_L \oplus \mathcal{O}_L \tau$ be the natural $G_{\mathbb{Q}}$ -invariant lattice lying inside \widetilde{V} . For any prime λ above ℓ of L, the \mathbb{F}_{ℓ^2} -vector space $\Lambda/\lambda\Lambda$ is isomorphic to $\overline{\rho}$.

If H is a given subgroup of $G_{\mathbb{Q}}$, then we see from the description of $\overline{\rho}$ as a reduction of $\widetilde{\rho}$ that $\dim \widetilde{\rho}^H \leq \dim \overline{\rho}^H$. To show equality, we first show that given a non-zero $\overline{v} \in \overline{V}^H$ it is possible to find a lift $\widetilde{v} \in \Lambda^H$, i.e. $\widetilde{v} \in \Lambda^H$, $\widetilde{v} \equiv \overline{v} \pmod{\lambda\Lambda}$. To do this write $\overline{v} = \overline{x} + \overline{y}\tau$ and let $H_1 = H \cap G_K$ and $H_2 = H \cap \tau G_K$.

Suppose both $\overline{x}, \overline{y} \neq 0$. For every $h \in H_1$, $\overline{\rho}(h)(\overline{v}) = \overline{\chi}(h)\overline{x} + \overline{\chi}'(h)\overline{y}\tau = \overline{x} + \overline{y}\tau = \overline{v}$. It follows that $\overline{\chi}(h) = \overline{\chi}'(h) = 1$ for all $h \in H_1$, and hence $\widetilde{\rho}(h) = 1$ for all $h \in H_1$ so that any lift of \overline{v} is invariant under $h \in H_1$. For every $h = \tau \sigma \in H_2$, $\overline{\rho}(h)(\overline{v}) = \overline{\chi}(\sigma)\overline{y} + \overline{\chi}'(\sigma)\overline{x}\tau = \overline{x} + \overline{y}\tau = \overline{v}$. Thus, $\overline{\chi}(\sigma)\overline{y} = \overline{x}$ and $\overline{\chi}'(\sigma)\overline{x} = \overline{y}$ for all $h = \tau \sigma \in H_2$. Note this implies that $\overline{\chi}(\sigma), \overline{\chi}'(\sigma), \overline{\chi}(\sigma), \overline{\chi}'(\sigma)$ are constant as $h = \tau \sigma$ varies in H_2 . Let $\widetilde{y} \in \mathcal{O}_L$ be any lift of \overline{y} . Define $\widetilde{x} = \widetilde{\chi}(\sigma)\widetilde{y}$ and $\widetilde{v} = \widetilde{x} + \widetilde{y}\tau$. Then also $\widetilde{\chi}'(\sigma)\widetilde{x} = \widetilde{y}$, and hence $\widetilde{\rho}(h)(\widetilde{v}) = \widetilde{v}$ for all $h \in H_2$.

Suppose one of $\overline{x}, \overline{y} = 0$. If there exists an element $h = \tau \sigma \in H_2$, then arguing as above, we have that $\overline{\chi}(\sigma)\overline{y} = \overline{x}$ and $\overline{\chi}'(\sigma)\overline{x} = \overline{y}$. But then implies both $\overline{x}, \overline{y} = 0$ contradicting $\overline{v} \neq 0$. Hence, we must have $H \subset G_K$. Again, arguing as above, we see that $\widetilde{\rho}(h) = 1$ for all $h \in H$ and so any lift \widetilde{v} of \overline{v} lies in Λ^H .

see that $\widetilde{\rho}(h) = 1$ for all $h \in H$ and so any lift \widetilde{v} of \overline{v} lies in Λ^H . The equality $\dim \overline{\rho}^H = \dim \widetilde{\rho}^H$ now follows by picking a lift as above for each element of a basis of \overline{V}^H to form a basis for \widetilde{V}^H of the same size.

From the above lemma, it follows that $M = N_K(\mathfrak{m}) |d_K|$ is the Artin conductor of $\overline{\rho}_{E/\mathbb{Q},\ell}$ which divides N_E .

5. Proof of Theorem 1.7

In this section, we show that the grossencharacter χ used to prove Theorem 1.6 can adjusted (in certain situations) so that it has the additional property that the character $\xi: (\mathbb{Z}/M\mathbb{Z})^{\times} \to \mathbb{C}^{\times}$ of the associated newform $g(z) = \sum_{\mathfrak{a} \in I(\mathfrak{m})} \chi([\mathfrak{a}]) q(z)^{N_K(\mathfrak{a})}$ is trivial

The Verlagerung map $\operatorname{Ver}: C_{\mathbb{Q}} \to C_K$ is defined by $\operatorname{Ver} = \prod_p \operatorname{Ver}_p$, where Ver_p is the natural map $\mathbb{Q}_p^{\times} \to (K \otimes \mathbb{Q}_p)^{\times}$ (here $p = \infty$ is included). By Theorem 4.1, the character ξ is given by the formula $\xi = \epsilon_K \frac{\chi \circ \operatorname{Ver}}{\omega_{\mathbb{Q}}^u}$. If χ is a grossencharacter on K of weight $k = a_0 + a_1 \tau$ and modulus \mathfrak{m} , then $\chi \circ \operatorname{Ver}$ is a grossencharacter on \mathbb{Q} of weight $a_0 + a_1$ and modulus $N_K(\mathfrak{m})$. Thus, the expression for ξ is indeed a grossencharacter of \mathbb{Q} of weight 0 and modulus M and hence factors to $C_{\mathbb{Q},M} \cong (\mathbb{Z}/M\mathbb{Z})^{\times}$.

Proposition 5.1. Let $H \subset G$ be finite abelian groups. Let v be the unique valuation of $\overline{\mathbb{Q}_{\ell}}$ extending that of \mathbb{Q}_{ℓ} . Suppose $f: H \to \overline{\mathbb{Q}_{\ell}}^{\times}$ is a character such that such that v(f(h)-1)>0 for all $h \in H$. Then there exists a character $f': G \to \overline{\mathbb{Q}_{\ell}}^{\times}$ extending f such that v(f'(g)-1)>0 for all $g \in G$.

Proof. The main idea of the proof is to mimic the proof of Baer's criterion (c.f. [3]). We shall write the abelian groups $H \subset G$ additively. The first step is to show the following intermediate result.

Let $f:m\mathbb{Z}\to\overline{\mathbb{Q}_\ell}^{\times}$ be a homomorphism such that f(m) is a root of unity and v(f(m)-1)>0. Then there exists a homomorphism $\overline{f}:\mathbb{Z}\to\overline{\mathbb{Q}_\ell}^{\times}$ extending f such that $\overline{f}(1)$ is a root of unity and $v(\overline{f}(1)-1)>0$. To show that \overline{f} exists, choose a root of unity $x\in\overline{\mathbb{Q}_\ell}$ such that $x^m=f(m)$. Let $L=\mathbb{Q}_\ell(x),\ K=\mathbb{Q}_\ell(f(m)),$ with $\lambda\mid\ell$ the unique primes of L, \mathbb{Q}_ℓ corresponding to the restrictions of v to these fields. Let \overline{x} be the reduction of x modulo λ and let \widetilde{x} denote the Teichmüller lift of this reduction to $\overline{\mathbb{Q}_\ell}^{\times}$. Since $x^m=f(m)\equiv 1\pmod{\lambda}$, we see that $\widetilde{x}^m=1$, so \widetilde{x} is an m-th root of unity in $\overline{\mathbb{Q}_\ell}$. Now, $(x/\widetilde{x})^m$ is also equal to f(m) but x/\widetilde{x} is congruent to 1 modulo λ . We define \overline{f} by $\overline{f}(1)=x/\widetilde{x}$.

Let $f: H \to \overline{\mathbb{Q}_\ell}^\times$ be given such that v(f(h)-1)>0 for all $h\in H$. There exists a maximal extension $\overline{f}: \overline{H} \to \overline{\mathbb{Q}_\ell}^\times$ extending $f: H \to \overline{\mathbb{Q}_\ell}^\times$ such that $v(\overline{f(h)}-1)>0$ for all $\overline{h}\in \overline{H}$. If $\overline{H}=G$, then we are done. If \overline{H} is strictly contained in G, then let $a\in G$ such that $a\not\in \overline{H}$. Consider the ideal $\mathfrak{a}=\left\{r\in \mathbb{Z}: ra\in \overline{H}\right\}$ of \mathbb{Z} . We define a homomorphism $f_0: \mathfrak{a} \to \overline{\mathbb{Q}_\ell}^\times$ by $f_0(r)=\overline{f}(ra)$. By the intermediate result above, there is an extension $\overline{f}_0: \mathbb{Z} \to \overline{\mathbb{Q}_\ell}^\times$ such that $v(\overline{f}_0(1)-1)>0$. Let $u=\overline{f}_0(1)$. We now define $f'(x+ra)=\overline{f}(x)\cdot u^r$, where $x\in \overline{H}$, and $r\in \mathbb{Z}$. This is well-defined since if x+ra=0, then $r\in \mathfrak{a}$, and hence $\overline{f}(x)\cdot ru=\overline{f}(x)\cdot \overline{f}(ra)=\overline{f}(x+ra)=0$. Now, f' extends \overline{f} to $H'=\langle \overline{H},a>$ still keeping the property v(f'(h')-1)>0 for all $h'\in H'$, contradicting the maximality of \overline{f} .

Let $\overline{\text{Ver}}: C_{\mathbb{Q},M} \to C_{K,\mathfrak{m}}$ be the homomorphism induced by Ver on ray class groups.

Corollary 5.2. Let $\xi: C_{\mathbb{Q},M} \to \mathbb{C}^{\times}$ be a character such that ξ is trivial on the kernel of $\overline{\operatorname{Ver}}$ and $\xi \equiv 1 \pmod{\lambda}$ for λ a prime above ℓ of the field generated by ξ . Then there exists a character $\psi: C_{\mathbb{Q},\mathfrak{m}} \to \mathbb{C}^{\times}$ such that $\psi \circ \overline{\operatorname{Ver}} = \xi$ and $\psi \equiv 1 \pmod{\lambda}$.

Let χ be as in the proof of Theorem 1.6 and let $\xi = \epsilon_K \frac{\chi \circ \text{Ver}}{\omega_{\mathbb{Q}}}$. Assume ξ^{-1} satisfies the requirements of the corollary above and let ψ be the character extending the character ξ^{-1} from the corollary. The character $\chi' = \chi \psi$ also satisfies the requirements for Theorem 1.6, but now the character of the associated newform g' becomes

$$\xi' = \epsilon_K \frac{\chi \psi \circ \operatorname{Ver}}{\omega_{\mathbb{Q}}} = \epsilon_K \frac{\chi \circ \operatorname{Ver}}{\omega_{\mathbb{Q}}} \psi \circ \operatorname{Ver} = \xi \xi^{-1} = 1.$$

Since $\overline{\rho}_{f,\ell} \cong \overline{\rho}_{g,\lambda} \pmod{\lambda}$, it follows that $\xi \equiv 1 \pmod{\lambda}$ as the character of f is trivial. Thus, to prove Theorem 1.7, we need only verify that ξ is trivial on the kernel of $\overline{\text{Ver}}$.

Let $\pi_N: C_{\mathbb{Q}} \to C_{\mathbb{Q},M}$ denote the quotient map. Let $x \in C_{\mathbb{Q}}$ such that $\overline{\operatorname{Ver}}(\pi_N(x)) = 1$. This means that $\operatorname{Ver}(x) = u \cdot k \in U_{K,\mathfrak{m}} \cdot K^{\times}$. Now, $\chi(u \cdot k) = \chi(u) = \chi_{\infty}(u_{\infty}) = u_{\infty}$. On the other hand, $\omega_{\mathbb{Q}} = \omega_K^{1/2}$ and $\omega_K(u \cdot k) = \omega_{\mathbb{Q}}(u) = \omega_{K,\infty}(u_{\infty}) = u_{\infty}^2$. Hence, $\frac{\chi_0 \operatorname{Ver}}{\omega_{\mathbb{Q}}}$ considered as a character of $C_{\mathbb{Q},M}$ is trivial on the kernel of $\overline{\operatorname{Ver}}$.

Thus, it remains to show that ϵ_K is trivial on the kernel of $\overline{\operatorname{Ver}}$. The class group $C_{\mathbb{Q},M}\cong (\mathbb{Z}/M\mathbb{Z})^{\times}$. Given an element $g\in C_{\mathbb{Q},M}$, there exist infinitely many primes q such that $\overline{q}=g\pmod M$ by the Cheboterov density theorem. The character ϵ_K considered as a character of $C_{\mathbb{Q},M}$ can then be described by $q\mapsto \left(\frac{d_K}{q}\right)$. Let $g\in C_{\mathbb{Q},M}$ be such that $\overline{\operatorname{Ver}}(g)=1$ and let us represent $g=\overline{q}$ for an odd prime q. The property $\overline{\operatorname{Ver}}(\overline{q})=1$ implies that $q\equiv 1\pmod p$ for every prime $p\nmid N_K(\mathfrak{m})$.

Assume now that $2 \nmid d_K$ so that $d_K \equiv 1 \pmod{4}$ is square-free. From [13] §5.8, we deduce that

- (1) The character $\epsilon_K = \epsilon_{E/\mathbb{Q},\ell}$ is unramified outside $p \mid N_E$ because of the condition $3 < \ell \nmid N_E$.
- (2) Furthermore, if $p \nmid d_K$, then $p^2 \mid N_E$.

Thus, since d_K is square-free, it follows that if $p \mid d_K$, then $p \mid N_E/d_K$. But then $p \mid N_K(\mathfrak{m})$ as only semi-stable primes can be stripped from N_E (c.f. [14] §4.6). Thus, we have

$$\epsilon_K(q) = \left(\frac{d_K}{q}\right) = (-1)^{\frac{q-1}{2}\frac{d_K-1}{2}} \left(\frac{q}{d_K}\right) = 1$$

as $d_K \equiv 1 \pmod{4}$ and $q \equiv 1 \pmod{p}$ for each $p \mid N_K(\mathfrak{m})$. Given the following lemma, Theorem 1.7 is now proved.

Lemma 5.3. Let E/\mathbb{Q} be an elliptic curve with conductor N_E and suppose $\operatorname{im}(\overline{\rho}_{E/\mathbb{Q},\ell}) \subset N'$ for ℓ odd. Let K be the imaginary quadratic field associated to such $\overline{\rho}_{E/\mathbb{Q},\ell}$. If $16 \nmid N_E$ then $2 \nmid d_K$.

Proof. Let $\Phi_2 = \overline{\rho}_{E/\mathbb{Q},\ell}(I_2)$ be the image of inertia at 2. Then Φ_2 can be considered as a subgroup of $\mathrm{SL}_2(\mathbb{F}_3)$ with order restricted to 1,2,3,4,6,8,24 [13]. If $\#\Phi_2 = 1,2,3,6$, then under the assumption ℓ odd, we have that $2 \nmid d_K$ by [13] §5.8. In fact, if $\#\Phi_2 = 24$, then $2 \nmid d_K$ as $\mathrm{SL}_2(\mathbb{F}_3)$ cannot be embedded into the normalizer of a non-split Cartan subgroup N'.

If $\#\Phi_2 = 4$ and $2 \mid d_K$ then $\#\overline{\rho}_{E/\mathbb{Q},\ell}(G_{2,0}) = \#\overline{\rho}_{E/\mathbb{Q},\ell}(G_{2,1}) = 4$ which implies the Artin exponent e_p of $\overline{\rho}_{E/\mathbb{Q},\ell}$ is ≥ 4 . Similarly, if $\#\Phi_2 = 8$, then also $e_p \geq 4$. \square

6. Conclusions

It is known that $S^{N'}_{\mathbb{Q}}$ contains the primes 2,3,5,7,11. For instance, the modular curves $X(\ell)/N'$ (which classify up to twist those E/\mathbb{Q} with $\ell \in S^{N'}_{E/\mathbb{Q}}$) are isomorphic

to \mathbb{P}^1/\mathbb{Q} in the cases $\ell=3,5,7$. It is possible to give explicit equations for such elliptic curves [2]. On the other hand, X(11)/N' is the elliptic curve 121D which has rank 1 so there are infinitely-many E/\mathbb{Q} (non-isomorphic over $\overline{\mathbb{Q}}$) with $11 \in S_{E/\mathbb{Q}}^{N'}$. Explicit examples of such elliptic curves seem to be unknown however.

A naive search among elliptic curves E/\mathbb{Q} with integral j-invariant having absolute value less than 800,000 only give rise to the primes 2,3,5 in $S^{N'}_{\mathbb{Q}} \cup S^{N}_{\mathbb{Q}}$. It would be interesting to gather further computational data regarding the sets $S^{N}_{\mathbb{Q}}$ and $S^{N'}_{\mathbb{Q}}$ especially in relation to congruence primes. For instance, the following is an example illustrating the Theorems shown in this paper.

Consider the elliptic curve $4176N = E/\mathbb{Q}: y^2 = x^3 - 3105x + 139239$ from Cremona's tables [4]. Its discriminant, j-invariant, and conductor are $\Delta = -2^43^929^5$, $j = -10512288000/20511149 = 2^83^35^323^3/29^5$, and $N = 4176 = 2^43^229$, respectively. Because the j-invariant is of the form $125\frac{t(2t+1)^3(2t^2+7t+8)^3}{(t^2+t-1)^5}$ for t = -4/5, the explicit parametrization of X(5)/N' in [2] implies that $5 \in S_{E/\mathbb{Q}}^{N'}$. Since E/\mathbb{Q} is semi-stable at 29 and the exponent of 29 in Δ is divisible by 5, by Ribet's theorem [11], $\overline{\rho}_\ell$ is modular of level $144 = 2^43^2$. Indeed, there is a newform g at level 144 which is congruent modulo 5 to the newform f at level $4176 = 144 \cdot 29$ attached to E/\mathbb{Q} . The first few fourier coefficents a_p for p prime are given below (for p dividing the level, the signs of the action of the Atkin-Lehner involution W_p are given).

$$a_p(g) = [-, +, 0, 4, 0, 2, 0, -8, 0, 0, 4, -10, 0, -8, 0, 0, \dots]$$

 $a_p(f) = [-, +, 0, -1, -5, -3, 5, 2, 0, +, -6, 10, 10, 2, \dots]$

The newform g corresponds to the isogeny class of elliptic curves 144A which have complex multiplication by $\sqrt{-3}$, so g is induced from a grossencharacter on the imaginary quadratic field $\mathbb{Q}(\sqrt{-3})$.

7. Acknowledgements

I would like to thank CICMA, MPIM, and MSRI for their support and hospitality during my stay there 1998-99, January-August 2000, and October-December 2000 respectively.

References

- [1] Breuil C., Conrad B., Diamond F., and Taylor R. On the modularity of elliptic curves over Q: wild 3-adic exercises. Journal of the American Mathematical Society, to appear.
- [2] I. Chen. On Siegel's modular curve of level 5 and the class number one problem. Journal of Number Theory, 74(2), 1999.
- [3] P.M. Cohn. Algebra, volume 2. John Wiley & Sons, second edition, 1982.
- [4] J.E. Cremona. Algorithms for modular elliptic curves. Cambridge University Press, second edition, 1997.
- [5] A. Kraus. Une remarque sur les points de torsion des courbes elliptiques. C. R. Acad. Sci. Paris, t. 321, Série I, pages 1143–1146, 1995.
- [6] B. Mazur. Rational isogenies of prime degree. Inventiones mathematicae, 44:129-162, 1978.
- [7] T. Miyake. Modular Forms. Springer-Verlag, 1989.
- [8] F. Momose. Galois action on some ideal section points of the abelian variety associated with a modular form and its application. Nagoya Mathematical Journal, 91:19–36, 1983.
- [9] F. Momose. Rational points on the modular curves X_{split}(p). Compositio Mathematica, 52:115-137, 1984.
- [10] K. Ribet. On ℓ-adic representations attached to modular forms. Inventiones Mathematicae, 28:245–275, 1975.

- [11] K. Ribet. On modular representations of $\operatorname{Gal}(\overline{\mathbb{Q}} \mid \mathbb{Q})$ arising from modular forms. *Inventiones Mathematicae*, 100:431–476, 1990.
- [12] J.P. Serre. Corps locaux. Number VIII in Publications de l'Université de Nancago. Hermann, Paris, deuxième edition, 1968.
- [13] J.P. Serre. Propriétés galoisiennes des points d'ordre fini des courbes elliptiques. *Inventiones Mathematicae*, 15:259–331, 1972.
- [14] J.P. Serre. Sur les représentations modulaires de degré 2 de $\mathrm{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$. Duke Mathematical Journal, 54(1):179–230, 1987.
- [15] A. Weil. On a certain type of characters of the idèle-class groups of an algebraic number-field. In Proceedings of the international symposium of algebraic number theory, Tokyo & Nikko, 1955, pages 1–7, Tokyo, 1956. Science Council of Japan.

Max-Planck-Institut-für-Mathematik, Vivatsgasse 7, P.O. Box 7280, D-53072 Bonn, Germany

 $E ext{-}mail\ address: chen@mpim-bonn.mpg.de}$