
SURJECTIVITY OF MOD ` REPRESENTATIONS ATTACHED
TO ELLIPTIC CURVES AND CONGRUENCE PRIMES

IMIN CHEN

Abstract. For a modular elliptic curve E/Q, we show a number of links

between the primes ` for which the mod ` representation of E/Q has projective
dihedral image and congruence primes for the newform associated to E/Q.

1. Introduction

Let E/Q be an elliptic curve. Denote by ρE/Q,` : GQ → GL2(F`) its mod
` representation, i.e. the representation obtained by the action of the absolute
Galois group GQ of Q on the `-torsion points of E/Q for ` prime. Let SE/Q ={
` prime | ρE/Q,` is not surjective

}
.

Theorem 1.1 (Serre, [13]). The set SE/K is finite if E/K does not have complex
multiplication.

In the same paper [13], the following question was asked.

Question 1.2. Is SQ =
⋃

E/Q SE/Q finite as E/Q runs through elliptic curves
without complex multiplication?

This question is usually analyzed according to the nature of the image of ρE/Q,`.
If ρE/Q,` is not surjective, then by a classification of the subgroups of GL2(F`) we
have that im ρE/Q,` is contained the normalizer N ′ or N of a non-split or split
Cartan subgroup, a Borel subgroup B, or a subgroup D with projective image S4.
The former three subgroups can be conjugated into one of the following standard
forms (under the assumption ` is odd in case of N ′), respectively,

N ′ =
{(

α λβ
β α

)
,

(
α λβ
−β −α

)
| α, β ∈ F`, (α, β) 6= (0, 0)

}
N =

{(
a 0
0 b

)
,

(
0 b
a 0

)
| a, b ∈ F×`

}
B =

{(
a b
0 d

)
| a, d ∈ F×` , b ∈ F`

}
,

where λ is a non-square in F×` .
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Let SH
E/Q =

{
` prime | im(ρE/Q,`) ⊂ H

}
. For H being conjugate to one of

N ′, N,B,D, one can ask whether SH
Q =

⋃
E/Q S

H
E/Q is finite as E/Q runs through

elliptic curves without complex multiplication.
Mazur’s [6] results on rational isogenies of prime degree show that

SB
Q ⊂ {p prime | p ≤ 37} .

Momose shows [9] that an E/Q with im(ρE/Q,`) contained in a conjugate of N
has potentially good reduction at all odd primes if ` > 13. These results rely on
studying the associated modular curves and bounding their Q-rational points via
the arithmetic and geometry of their jacobians. Finally, Serre shows that SD

Q ⊂
{p prime | p ≤ 13} using local methods (c.f. [6] p. 36).

The case of N ′ is the most difficult to study using jacobians of modular curves
because the jacobians in question do not have a non-trivial quotient with finitely-
many Q-rational points.

In this paper, we investigate more carefully the sets SN
E/Q and SN ′

E/Q for a fixed
elliptic curve E/Q. Under the assumption of modularity we will analyze these sets
from the point of view of modular forms.

Remark 1.3. Breuil, Conrad, Diamond and Taylor have recently established the
modularity of all elliptic curves over Q [1] so this assumption is no longer necessary.

We briefly recall one such connection implicit in work of Ribet [10] and Kraus
[5]. Suppose E/Q is such that im(ρE/Q,`) is contained in H where H = N ′, N and
` is odd. Let C ′ and C denote the split and non-split Cartan subgroups which are
normalized by N ′ and N , respectively.

Let εE/Q,` be the character obtained by composing ρE/Q,` with the map to the
quotients N/C ∼= N ′/C ′ ∼= {±1}. The character εE/Q,` is non-trivial in the case
H = N ′ as complex conjugation cannot be sent to an element in C ′ under ρE/Q,`.
In the case H = N , we may assume without loss of generality that εE/Q,` is non-
trivial or else we are back in the H = B case. Thus, the character εE/Q,` cuts out
a quadratic extension K of Q which is imaginary in the case H = N ′.

The representation ρE/Q,`
∼= IndQ

K χ is induced from a character χ : GK → F×,
where F = F`2 or F` in the cases H = N ′ or N , respectively. It thus has the
property ρE/Q,` ⊗ εE/Q,`

∼= ρE/Q,`. The following lemma can then be shown.

Lemma 1.4. Let E/Q be a modular elliptic curve whose associated newform is
f ∈ S2(Γ0(NE)). Suppose im(ρE/Q,`) ⊂ H with H = N ′, N and ` is odd. Let E′ be
the twist of E by εE/Q,`, and let f ′ be the corresponding twist of f ∈ S2(Γ0(NE)).
Then NE′ = NE and f ′ ∈ S2(Γ0(NE)) is a newform.

Proof. Kraus shows in [5] that the type of reduction (good, multiplicative, additive)
of E and E′ are the same, i.e. the tame exponents εp of E and E′ are the same.
On the other hand, the wild exponent δp of E depends only on the restriction of
ρE/Q,` and ρE′,` = ρE/Q,` ⊗ εE/Q,` to the wild inertia group at p. For p ≥ 3, the
restrictions are the same as εE/Q,` is trivial on the wild inertia at p. For p = 2, the
restrictions still have the same image. �

We say that two eigenforms f, g ∈ S2(Γ0(N)) are congruent modulo λ if ap(f) ≡
ap(g) (mod λ) for p - `N where λ is a prime above ` of Q(ap(f), ap(g)). We say that
` is a congruence prime for newform f ∈ S2(Γ0(N)), if there exists an eigenform
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g in the (Petersson) orthogonal complement of f such that g is congruent to f
modulo λ above `.

The property that ρE′/Q,`
∼= ρE/Q,` ⊗ εE/Q,`

∼= ρE/Q,` implies the two newforms
f, f ′ are congruent modulo `. Thus the following proposition holds.
Proposition 1.5. Let E/Q be a modular elliptic curve whose associated newform
is f ∈ S2(Γ0(NE)). Suppose ` is odd and im(ρE/Q,`) is contained in N ′, or N but
not C. Then ` is a congruence prime for f .

In this paper, we will show that there are additional congruences between f and
CM -forms in the case N ′ and discuss how the character of these CM -forms can be
controlled under certain hypotheses.
Theorem 1.6. Let E/Q be a modular elliptic curve whose associated newform is
f ∈ S2(Γ0(NE)).

Suppose im(ρE/Q,`) ⊂ N ′ for 3 < ` - NE. Then there exists a newform g ∈
S2(Γ1(M)) which is induced from a grossencharacter on K and is congruent to f
modulo λ a prime above ` where M | NE is the Artin conductor of ρE/Q,`.

Theorem 1.7. Let E/Q be a modular elliptic curve whose associated newform is
f ∈ S2(Γ0(NE)) and 16 - NE. Suppose im(ρE/Q,`) ⊂ N ′ for 3 < ` - NE. Then
there exists a newform g ∈ S2(Γ0(M)) which is induced from a grossencharacter
on K and is congruent to f modulo λ a prime above ` where M | NE is the Artin
conductor of ρE/Q,`.

I would like to thank F. Momose for mentioning to me the connection between
elliptic curves with im(ρE/Q,`) ⊂ N ′ and grossencharacters on imaginary quadratic
fields (c.f. also the paper [8] from which the case of prime power NE in Theorem 1.7
follows).

2. Congruences with CM-forms

2.1. Algebraic characters. Fix an algebraic closure Q of Q and an algebraic
closure Q` of Q`. Let K ⊂ Q ⊂ Q` be a number field and denote by DK the set of
embeddings of K into Q.

Let T/Q = ResK
Q (Gm/K) be the restriction of scalars of Gm/K to Q. This

is a commutative algebraic group over Q, isomorphic over Q to G[K:Q]
m , with the

following properties.
(1) T (Q) = K× and T (Q`) = (K ⊗Q`)× =

∏
v|`Kv

(2) For all σ ∈ DK , there is an algebraic character [σ] : T/Q → GL1 /Q such
that composite

K× = T (Q) ⊂ T (Q)
[σ]−−−−→ GL1(Q) = Q×

is given by the embedding σ.
(3) Every algebraic homormorphism f : T/Q → GL1 /Q is of the form f =∏

σ∈DK
[σ]n(σ) where n(σ) ∈ Z. The element

∑
σ∈DK

n(σ)σ ∈ Z[DK ] is
called the weight of f and completely determines f . Given a weight k ∈
Z[DK ], let [k] denote the algebraic homomorphism determined by k.

2.2. Grossencharacters of type A0. Let K ⊂ Q be a number field. For a place
v of K, let Kv be the completion of K at v, πv a uniformizer of Kv, and Ov the
ring of integers of Kv in the case v is a finite place. Let JK be the ideles of K
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and CK = JK/K
× the idèle class group. For a modulus m of K let Um =

∏
v Um,v

where

Um,v =

{
ker(O×

v → (Ov/mOv)×) if v - ∞
the connected component of 1 if v | ∞

Let Em = ker(K× → JK/Um) denote the units congruent to 1 modulo m, and
Cm = C/UmK

× be the ray class group of modulus m.
Let χ : CK → Q`

×
be a continuous character. This can be written in the form

χ =
∏

v χv where χv |O×v = 1 for all but finitely-many v. The homormorphism
χ : CK → Q` is said to be locally algebraic of weight k ∈ Z[DK ] if χ` =

∏
v|` χv

coincides with the algebraic character [−k] :
∏

v|`Kv = T (Q`) → GL1(Q`) = Q`
×

of weight −k on the subgroup
∏

v|` Um,v. We say χ has modulus m if χ` coincides
with [−k] on

∏
v|` Um,v and χv |Um,v

= 1 for v - `. The smallest modulus for χ is
called the conductor of χ.

When ` = ∞, a locally algebraic character χ of modulus m and weight k coincides
with the notion of a grossencharacter of type A0 of modulus m and weight k.

Theorem 2.1 (Weil, [15]). Let χ be a grossencharacter of type A0. The extension
Q(χ(πv) | v - ∞m) is a finite extension of Q called the field generated by χ.

Proposition 2.2. Let k ∈ Z[DK ] be a weight. There exists a non-trivial grossen-
character of type A0 of weight k and modulus m if and only if [k](Em) = 1. If this
holds then there are hm such grossencharacters where hm is the order of the class
group Cm.

There is a natural grossencharacter of type A0 of conductor OK and weight∑
σ∈DK

σ. This is given by

ωK : CK → R>0 ⊂ C×

x 7→
∏
v

||xv||

where ||xv|| = |xv|[Kv :Qp] and for p finite, |πv| = 1/p1/ev , and ev is the ramification
index of v | p. The character ωK is trivial on K× by the product formula.

2.3. Fundamental characters. For v | ` let Kv be a fixed algebraic closure of
Kv. This fixes an algebraic closure kv of the residue field kv. Let IKv

denote the
inertia subgroup of GKv and IKv,t its tame quotient.

A character χ : IKv,t → kv
×

is called a tame character. For all q = `n, there is
a tame character

Θq−1 : IKv,t → F×q ⊂ kv
×

called the fundamental tame character of level n which is surjective to F×q .

A tame character is said to have level n if its image is contained in F×q ⊂ kv
×

,
q = `n, but no smaller finite field. The fundamental tame character of level n has
the property that any character χ of level ≤ n can be expressed as a power of Θq−1.

Suppose χ is a tame character of level n and χ = Θa
q−1 with 0 ≤ a < q − 1.

Because of the assumption that χ has level n, not all possible a arise. We may write
the integer a uniquely in the form a = a0+a1`+. . .+an−1`

n−1 where 0 ≤ ai ≤ `−1
and hence χ = Θa0

q−1Θ
`a1
q−1 . . .Θ

`n−1an−1
q−1 .
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Let χ : GKab
v
→ kv

×
be a character and consider its restriction to IKab

v
. This

restriction factors to IKab
v,t

to yield a tame character χ which we also denote by
χ. The local class field homomorphism rv : K×

v → GKab
v

induces an isomorphism
k×v

∼= IKab
v,t

so that the tame character χ has level ≤ n where q = `n = #kv. We
denote by χ |k×v the character on k×v obtained by precomposing the tame character
χ with the local class field homomorphism. Let DKv

denote the set of embeddings
σv : Kv → Kv. For each such embedding σv, let σv : kv → kv denote the associated
embedding of residue fields. We can therefore write the tame character in the
form as above χ =

∏
σv∈DKv

Θσva(σv)
q−1 where 0 ≤ a(σv) ≤ ` − 1. The element∑

σv∈DKv
a(σv)σv ∈ Z[DKv

] is called the optimal weight of χ at v.
A calculation in [13] shows that the composition

k×v
∼= IKab

v

Θq−1−−−−→ k×v

corresponds with the character x 7→ x−1.

3. Adjustment to optimal level and weight

Proposition 3.1. Let Q ⊂ K ⊂ Q be an imaginary quadratic field whose set of
embeddings to Q is denoted by DK = {1, τ}. Let χ : GK → F×`2 be a continuous
character with Artin conductor m and let χ̃ : CK → C× be its Teichmüller lift
considered as a continuous character of CK . Suppose that

(1) ` is inert in K

(2) χ |k×` = [1]
−1

.

Then there exists a grossencharacter χ of type A0 with conductor m and weight 1
and a prime λ above ` in the field generated by χ̃ and χ such that χ̃(πv) ≡ χ(πv)
(mod λ) for all v - ∞`m.

Proof. By the global class field homomorphism rK : CK → GKab we may regard
both χ and χ̃ as continuous characters of CK and can write χ =

∏
v χv and χ̃ =∏

v χ̃v where χv and χ̃v are characters of K×
v . By comparing χv and χ̃v place by

place we see that χ̃ has conductor m` and weight 0.
Let u ∈ Em = K× ∩Um. Since χ is trivial on K×, χ(u) = 1. On the other hand,

we also have χ |k×` (u) = [1]
−1

(u) = u−1 and χ |Um,v
(u) = 1 for v 6= `. Thus,

we have that u ≡ 1 (mod `). As K is imaginary quadratic and ` ≥ 5, this implies
u = 1.

Since Em is trivial, there exists a grossencharacter φ of type A0 with modulus
m and weight 1. Write φ =

∏
v φv. As φ has weight 1, φ∞(z) = z. Let δ : JK →

Q`
×
, δ =

∏
v δv be defined as follows. For v - ∞`, let δv = φv, and define δ∞ = 1,

δ` = φv[1]−1. By construction, δ factors to a character of CK . Let δ : CK → F`
×

be the reduction of δ modulo a prime λ′ above ` of the field generated by δ (which
is the same as the field generated by δ), and let δ̃ : CK → C× be the Teichmüller
lift of δ

The desired grossencharacter of type A0 is then χ = χ̃δ̃−1φ. The weight of χ
is 1 and it evidently has modulus m`. In fact, χ has conductor m. Since χ` =

χ̃`δ̃
−1
` φ` = [̃1]

−1
[̃1]φ̃`

−1
φ` we see that χ` is trivial on O×

` . Thus, χ has modulus
m. To see that χ has conductor precisely m, consider the character χ : CK → Q`

×
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given by χ = χ̃δ̃−1δ which has the same conductor as χ. Since χ reduces modulo
λ to χ having Artin conductor m, it follows that m divides the Artin conductor of
χ as the Artin conductor can only decrease under reduction modulo λ.

For v - ∞`m, χ(πv) = χ̃v(πv)δ̃−1
v (πv)φv(πv) = χ̃v(πv)φ̃−1

v (πv)φv(πv) ≡ χ̃v(πv)
(mod λ) where λ is a prime of the field generated by χ̃ and δ̃ above λ′. �

4. Proof of Theorem 1.6

Let E/Q be a modular elliptic curve whose associated newform is f ∈ S2(Γ0(NE)).
Suppose im(ρE/Q,`) ⊂ N ′ for 3 < ` - NE . Then ρE/Q,`

∼= IndQ
K χ is induced from

a character χ : GK → F×`2 on the imaginary quadratic field K associated to such a
ρE/Q,`. Since ` - NE , the argument in [13] p. 317 shows that ` is inert in K.

Let us briefly recall the definition of the Serre’s optimal weight attached to this
particular ρE/Q,` [14]. Identifying GQ`

with a decomposition subgroup at ` of GQ,
the restriction of ρE/Q,` to IQ`

factors through its tame quotient IQ`,t and is semi-
simple. Since ` is unramified in K, IQ`

⊂ GK so that

ρE/Q,` |IQ`

∼=
(
χ 0
0 χ′

)
where χ′(g) = χ(τ−1gτ).

Both χ and χ′ are tame characters of level 2 so that χ` = χ′. Write χ = Θa0+`a1
q−1

where q = `2 = #k×v and 0 ≤ a0, a1 ≤ `− 1. Since ρE/Q,` is induced from either χ
or χ′, up to switching χ′ for χ we may assume a > b. The optimal weight is defined
as k = 1 + a0 + `a1. Since ` - NE , Proposition 4 of [14] implies that k = 2 and so
a0 = 1, a1 = 0 in our situation. Thus, we see that χ |k×v = [1]

−1
.

Let χ̃ be the Teichmüller lift of χ. By Proposition 3.1, there exists a grossen-
character χ of type A0 with conductor m and weight 1 such that χ(πv) ≡ χ̃(πv)
(mod λ) where λ is a prime above ` of the field generated by χ̃ and χ.

Let I(m) denote the group of fractional ideals of K prime to m. For an ideal
a ∈ I(m) denote by [a] the idèle

∏
v-∞m π

ev
v associated to the ideal a =

∏
v-∞m pev

v ,
pv is the prime of K associated to the finite place v, and πv is any choice of
uniformizer for Kv.
Theorem 4.1 (Hecke). Let K ⊂ Q be an imaginary quadratic field with discrim-
inant dK and let DK = {1, τ} denote its embeddings into Q. Let χ be a grossen-
character of type A0 on K with conductor m and weight k = u · 1 ∈ Z[DK ], u > 0.
Consider g(z) =

∑
a∈I(m) χ([a])q(z)NK(a) where q(z) = e2πiz. Then g is a newform

on Su+1(Γ0(M), ξ) where M = NK(m) |dK | and ξ : (Z/MZ)× → C× is defined by
ξ = εK

χ◦Ver
ωu

Q
. Here εK : CQ → {±1} is the character defining K and Ver : CQ → CK

is the Verlagerung map.

Proof. c.f. Theorem 4.8.2 [7] (but note Miyake normalizes his grossencharacters so
they are unitary) �

Let g(z) =
∑

a∈I(m) χ([a])q(z)NK(a) ∈ S2(Γ1(M)) be the newform constructed
from χ as in the theorem above. Let p - `M be a prime and Frp ∈ GQ a Frobenius
element at p. If p is inert in K, then Frp 6∈ GK so that ap(f) ≡ tr ρE/Q,`(Frp) ≡
tr(IndQ

K χ)(Frp) ≡ 0 = ap(g) (mod λ). If p is split in K with vi | p being the two
places above p, then Frp ∈ GK so that ap(f) ≡ tr ρE/Q,`(Frp) ≡ tr(IndQ

K χ)(Frp) ≡
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χ(Frp)+χ(τ Frp τ
−1) ≡ χ(πv1)+χ(πv2) ≡ χ(πv1)+χ(πv2) = ap(g) (mod λ). Thus,

ap(f) ≡ ap(g) (mod λ) for p - `M .

Lemma 4.2. Let ` be a prime which is inert in an imaginary quadratic field K ⊂ Q
with its set of embeddings denoted by DK = {1, τ}. Let χ : GK → F×`2 be a character
with Artin conductor m(χ) prime to ` and suppose ρ = IndQ

K χ is irreducible. If we
denote by N(ρ) the Artin conductor of ρ, then

N(ρ) = (dK)NK(m(χ)).

Proof. Let χ̃ : GK → L× ⊂ C×, L = Q(ζn), n = `2 − 1 be the Teichmüller lift
of χ, and let ρ̃ = IndQ

K χ̃. By [12] VI.3 Proposition 6, N(ρ̃) = (dK)NK(m(χ̃)) =
(dK)`2NKm(χ).

Let us compare N(ρ) =
∏

p6=` p
ep and N(ρ̃) =

∏
p6=` p

ẽp (as ` - N(ρ̃)). The
quantities ep and ẽp are defined as

ep =
∞∑

i=0

#ρ(Gp,i)
#ρ(Gp,0)

(2− dim ρGp,i)

ẽp =
∞∑

i=0

#ρ̃(Gp,i)
#ρ̃(Gp,0)

(2− dim ρ̃Gp,i)

where Gp,i denotes the i-th ramification group of a decomposition group at p,
indexed so that Gp,0 is the inertia subgroup at p.

Our aim is to show that N(ρ) is the prime to `-part of N(ρ̃) and hence equal
to N(ρ̃) = (dK)NK(m(χ)). It suffices from the definitions of ep and ẽp to show
that dim ρH = dim ρ̃H for any given subgroup H of GQ. Let Ṽ = L ⊕ Lτ be
the representation space of ρ̃ and let Λ = OL ⊕ OLτ be the natural GQ-invariant
lattice lying inside Ṽ . For any prime λ above ` of L, the F`2-vector space Λ/λΛ is
isomorphic to ρ.

If H is a given subgroup of GQ, then we see from the description of ρ as a
reduction of ρ̃ that dim ρ̃H ≤ dim ρH . To show equality, we first show that given a
non-zero v ∈ V H

it is possible to find a lift ṽ ∈ ΛH , i.e. ṽ ∈ ΛH , ṽ ≡ v (mod λΛ).
To do this write v = x+ yτ and let H1 = H ∩GK and H2 = H ∩ τGK .

Suppose both x, y 6= 0. For every h ∈ H1, ρ(h)(v) = χ(h)x+χ′(h)yτ = x+yτ =
v. It follows that χ(h) = χ′(h) = 1 for all h ∈ H1, and hence ρ̃(h) = 1 for all
h ∈ H1 so that any lift of v is invariant under h ∈ H1. For every h = τσ ∈ H2,
ρ(h)(v) = χ(σ)y + χ′(σ)xτ = x+ yτ = v. Thus, χ(σ)y = x and χ′(σ)x = y for all
h = τσ ∈ H2. Note this implies that χ(σ), χ′(σ), χ̃(σ), χ̃′(σ) are constant as h = τσ
varies in H2. Let ỹ ∈ OL be any lift of y. Define x̃ = χ̃(σ)ỹ and ṽ = x̃+ ỹτ . Then
also χ̃′(σ)x̃ = ỹ, and hence ρ̃(h)(ṽ) = ṽ for all h ∈ H2.

Suppose one of x, y = 0. If there exists an element h = τσ ∈ H2, then arguing
as above, we have that χ(σ)y = x and χ′(σ)x = y. But then implies both x, y = 0
contradicting v 6= 0. Hence, we must have H ⊂ GK . Again, arguing as above, we
see that ρ̃(h) = 1 for all h ∈ H and so any lift ṽ of v lies in ΛH .

The equality dim ρH = dim ρ̃H now follows by picking a lift as above for each
element of a basis of V

H
to form a basis for Ṽ H of the same size. �

From the above lemma, it follows that M = NK(m) |dK | is the Artin conductor
of ρE/Q,` which divides NE .
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5. Proof of Theorem 1.7

In this section, we show that the grossencharacter χ used to prove Theorem 1.6
can adjusted (in certain situations) so that it has the additional property that the
character ξ : (Z/MZ)× → C× of the associated newform g(z) =

∑
a∈I(m) χ([a])q(z)NK(a)

is trivial.
The Verlagerung map Ver : CQ → CK is defined by Ver =

∏
p Verp, where Verp is

the natural map Q×
p → (K ⊗Qp)× (here p = ∞ is included). By Theorem 4.1, the

character ξ is given by the formula ξ = εK
χ◦Ver

ωu
Q

. If χ is a grossencharacter on K of
weight k = a0+a1τ and modulus m, then χ◦Ver is a grossencharacter on Q of weight
a0+a1 and modulus NK(m). Thus, the expression for ξ is indeed a grossencharacter
of Q of weight 0 and modulus M and hence factors to CQ,M

∼= (Z/MZ)×.

Proposition 5.1. Let H ⊂ G be finite abelian groups. Let v be the unique valuation
of Q` extending that of Q`. Suppose f : H → Q`

×
is a character such that such

that v(f(h) − 1) > 0 for all h ∈ H. Then there exists a character f ′ : G → Q`
×

extending f such that v(f ′(g)− 1) > 0 for all g ∈ G.

Proof. The main idea of the proof is to mimic the proof of Baer’s criterion (c.f. [3]).
We shall write the abelian groups H ⊂ G additively. The first step is to show the
following intermediate result.

Let f : mZ → Q`
×

be a homomorphism such that f(m) is a root of unity and
v(f(m) − 1) > 0. Then there exists a homomorphsim f : Z → Q`

×
extending f

such that f(1) is a root of unity and v(f(1)−1) > 0. To show that f exists, choose
a root of unity x ∈ Q` such that xm = f(m). Let L = Q`(x), K = Q`(f(m)),
with λ | ` the unique primes of L, Q` corresponding to the restrictions of v to these
fields. Let x be the reduction of x modulo λ and let x̃ denote the Teichmüller lift
of this reduction to Q`

×
. Since xm = f(m) ≡ 1 (mod λ), we see that x̃m = 1, so

x̃ is an m-th root of unity in Q`. Now, (x/x̃)m is also equal to f(m) but x/x̃ is
congruent to 1 modulo λ. We define f by f(1) = x/x̃.

Let f : H → Q`
×

be given such that v(f(h)−1) > 0 for all h ∈ H. There exists a
maximal extension f : H → Q`

×
extending f : H → Q`

×
such that v(f(h)−1) > 0

for all h ∈ H. If H = G, then we are done. If H is strictly contained in G, then let
a ∈ G such that a 6∈ H. Consider the ideal a =

{
r ∈ Z : ra ∈ H

}
of Z. We define a

homomorphism f0 : a → Q`
×

by f0(r) = f(ra). By the intermediate result above,
there is an extension f0 : Z → Q`

×
such that v(f0(1)− 1) > 0. Let u = f0(1). We

now define f ′(x + ra) = f(x) · ur, where x ∈ H, and r ∈ Z. This is well-defined
since if x+ ra = 0, then r ∈ a, and hence f(x) · ru = f(x) · f(ra) = f(x+ ra) = 0.
Now, f ′ extends f to H ′ =< H, a > still keeping the property v(f ′(h′)− 1) > 0 for
all h′ ∈ H ′, contradicting the maximality of f . �

Let Ver : CQ,M → CK,m be the homomorphism induced by Ver on ray class
groups.

Corollary 5.2. Let ξ : CQ,M → C× be a character such that ξ is trivial on the
kernel of Ver and ξ ≡ 1 (mod λ) for λ a prime above ` of the field generated by
ξ. Then there exists a character ψ : CQ,m → C× such that ψ ◦ Ver = ξ and ψ ≡ 1
(mod λ).
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Let χ be as in the proof of Theorem 1.6 and let ξ = εK
χ◦Ver

ωQ
. Assume ξ−1

satisfies the requirements of the corollary above and let ψ be the character extending
the character ξ−1 from the corollary. The character χ′ = χψ also satisfies the
requirements for Theorem 1.6, but now the character of the associated newform g′

becomes
ξ′ = εK

χψ ◦Ver
ωQ

= εK
χ ◦Ver
ωQ

ψ ◦Ver = ξξ−1 = 1.

Since ρf,`
∼= ρg,λ (mod λ), it follows that ξ ≡ 1 (mod λ) as the character of f

is trivial. Thus, to prove Theorem 1.7, we need only verify that ξ is trivial on the
kernel of Ver.

Let πN : CQ → CQ,M denote the quotient map. Let x ∈ CQ such that Ver(πN (x)) =
1. This means that Ver(x) = u · k ∈ UK,m ·K×. Now, χ(u · k) = χ(u) = χ∞(u∞) =
u∞. On the other hand, ωQ = ω

1/2
K and ωK(u · k) = ωQ(u) = ωK,∞(u∞) = u2

∞.
Hence, χ◦Ver

ωQ
considered as a character of CQ,M is trivial on the kernel of Ver.

Thus, it remains to show that εK is trivial on the kernel of Ver. The class group
CQ,M

∼= (Z/MZ)×. Given an element g ∈ CQ,M , there exist infinitely many primes
q such that q = g (mod M) by the Cheboterov density theorem. The character
εK considered as a character of CQ,M can then be described by q 7→

(
dK

q

)
. Let

g ∈ CQ,M be such that Ver(g) = 1 and let us represent g = q for an odd prime q.
The property Ver(q) = 1 implies that q ≡ 1 (mod p) for every prime p - NK(m).

Assume now that 2 - dK so that dK ≡ 1 (mod 4) is square-free. From [13] §5.8,
we deduce that

(1) The character εK = εE/Q,` is unramified outside p | NE because of the
condition 3 < ` - NE .

(2) Furthermore, if p - dK , then p2 | NE .
Thus, since dK is square-free, it follows that if p | dK , then p | NE/dK . But

then p | NK(m) as only semi-stable primes can be stripped from NE (c.f. [14] §4.6).
Thus, we have

εK(q) =
(
dK

q

)
= (−1)

q−1
2

dK−1
2

(
q

dK

)
= 1

as dK ≡ 1 (mod 4) and q ≡ 1 (mod p) for each p | NK(m). Given the following
lemma, Theorem 1.7 is now proved.
Lemma 5.3. Let E/Q be an elliptic curve with conductor NE and suppose im(ρE/Q,`) ⊂
N ′ for ` odd. Let K be the imaginary quadratic field associated to such ρE/Q,`. If
16 - NE then 2 - dK .

Proof. Let Φ2 = ρE/Q,`(I2) be the image of inertia at 2. Then Φ2 can be considered
as a subgroup of SL2(F3) with order restricted to 1, 2, 3, 4, 6, 8, 24 [13]. If #Φ2 =
1, 2, 3, 6, then under the assumption ` odd, we have that 2 - dK by [13] §5.8. In
fact, if #Φ2 = 24, then 2 - dK as SL2(F3) cannot be embedded into the normalizer
of a non-split Cartan subgroup N ′.

If #Φ2 = 4 and 2 | dK then #ρE/Q,`(G2,0) = #ρE/Q,`(G2,1) = 4 which implies
the Artin exponent ep of ρE/Q,` is ≥ 4. Similarly, if #Φ2 = 8, then also ep ≥ 4. �

6. Conclusions

It is known that SN ′

Q contains the primes 2, 3, 5, 7, 11. For instance, the modular
curvesX(`)/N ′ (which classify up to twist those E/Q with ` ∈ SN ′

E/Q) are isomorphic
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to P1/Q in the cases ` = 3, 5, 7. It is possible to give explicit equations for such
elliptic curves [2]. On the other hand, X(11)/N ′ is the elliptic curve 121D which has
rank 1 so there are infinitely-many E/Q (non-isomorphic over Q) with 11 ∈ SN ′

E/Q.
Explicit examples of such elliptic curves seem to be unknown however.

A naive search among elliptic curves E/Q with integral j-invariant having ab-
solute value less than 800, 000 only give rise to the primes 2, 3, 5 in SN ′

Q ∪ SN
Q . It

would be interesting to gather further computational data regarding the sets SN
Q

and SN ′

Q especially in relation to congruence primes. For instance, the following is
an example illustrating the Theorems shown in this paper.

Consider the elliptic curve 4176N = E/Q : y2 = x3 − 3105x+ 139239 from Cre-
mona’s tables [4]. Its discriminant, j-invariant, and conductor are ∆ = −2439295,
j = −10512288000/20511149 = 283353233/295, and N = 4176 = 243229, respec-
tively. Because the j-invariant is of the form 125 t(2t+1)3(2t2+7t+8)3

(t2+t−1)5 for t = −4/5,

the explicit parametrization of X(5)/N ′ in [2] implies that 5 ∈ SN ′

E/Q. Since E/Q is
semi-stable at 29 and the exponent of 29 in ∆ is divisible by 5, by Ribet’s theorem
[11], ρ` is modular of level 144 = 2432. Indeed, there is a newform g at level 144
which is congruent modulo 5 to the newform f at level 4176 = 144 · 29 attached to
E/Q. The first few fourier coefficents ap for p prime are given below (for p dividing
the level, the signs of the action of the Atkin-Lehner involution Wp are given).

ap(g) = [−,+, 0, 4, 0, 2, 0,−8, 0, 0, 4,−10, 0,−8, 0, 0, . . .

ap(f) = [−,+, 0,−1,−5,−3, 5, 2, 0,+,−6, 10, 10, 2, . . .

The newform g corresponds to the isogeny class of elliptic curves 144A which
have complex multiplication by

√
−3, so g is induced from a grossencharacter on

the imaginary quadratic field Q(
√
−3).
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