SURJECTIVITY OF MOD ¢ REPRESENTATIONS ATTACHED
TO ELLIPTIC CURVES AND CONGRUENCE PRIMES

IMIN CHEN

ABSTRACT. For a modular elliptic curve E/Q, we show a number of links
between the primes £ for which the mod ¢ representation of F/Q has projective
dihedral image and congruence primes for the newform associated to E/Q.

1. INTRODUCTION

Let E/Q be an elliptic curve. Denote by pg /g, : Go — GL2(F,) its mod
¢ representation, i.e. the representation obtained by the action of the absolute
Galois group Gg of Q on the (-torsion points of £/Q for ¢ prime. Let Sg/,q =

{é prime | pg /g, is not surjective }

Theorem 1.1 (Serre, [13]). The set Sg i is finite if E/K does not have complex
multiplication.

In the same paper [13], the following question was asked.

Question 1.2. Is Sp = UE/Q S finite as E/Q runs through elliptic curves
without complex multiplication?

This question is usually analyzed according to the nature of the image of pg Q.0
If P/, 1s not surjective, then by a classification of the subgroups of GLy(Fy) we
have that impp g, is contained the normalizer N "or N of a non-split or split
Cartan subgroup, a Borel subgroup B, or a subgroup D with projective image Sy.
The former three subgroups can be conjugated into one of the following standard
forms (under the assumption ¢ is odd in case of N”), respectively,

v {61 M) laserian £ 0.0)
{0 er]
B:{(g Z)a,deF;,bem},

where A is a non-square in F;.

Date: 1 August 2000.

1991 Mathematics Subject Classification. Primary: 11G05, Secondary: 11F80; Torsion points
of elliptic curves, Galois representations, congruence primes, Serre tori, grossencharacters, non-
split Cartan.

This research was supported by CICMA (1998-99) and MPIM (2000).

1



2 IMIN CHEN

N’',N, B, D, one can ask whether Sg = UE/Q Sg/(@ is finite as E//Q runs through
elliptic curves without complex multiplication.
Mazur’s [6] results on rational isogenies of prime degree show that

S(g C {p prime | p < 37}.

Momose shows [9] that an E/Q with im(pg/q) contained in a conjugate of N
has potentially good reduction at all odd primes if ¢ > 13. These results rely on
studying the associated modular curves and bounding their Q-rational points via
the arithmetic and geometry of their jacobians. Finally, Serre shows that Sg -
{p prime | p < 13} using local methods (c.f. [6] p. 36).

The case of N’ is the most difficult to study using jacobians of modular curves
because the jacobians in question do not have a non-trivial quotient with finitely-
many Q-rational points.

In this paper, we investigate more carefully the sets Sg /Q and Sg// for a fixed
elliptic curve E/Q. Under the assumption of modularity we will analyze these sets
from the point of view of modular forms.

Remark 1.3. Breuil, Conrad, Diamond and Taylor have recently established the
modularity of all elliptic curves over Q [1] so this assumption is no longer necessary.

We briefly recall one such connection implicit in work of Ribet [10] and Kraus
[5]. Suppose E/Q is such that im(pgq ) is contained in H where H = N’, N and
¢ is odd. Let C" and C denote the split and non-split Cartan subgroups which are
normalized by N’ and N, respectively.

Let €p/q,¢ be the character obtained by composing pp /g , with the map to the
quotients N/C = N'/C" = {£1}. The character eg/qg  is non-trivial in the case
H = N’ as complex conjugation cannot be sent to an element in C’ under pg Q.0+
In the case H = N, we may assume without loss of generality that eg/g ¢ is non-
trivial or else we are back in the H = B case. Thus, the character €z,q ¢ cuts out
a quadratic extension K of Q which is imaginary in the case H = N'.

The representation pg g = Ind% x is induced from a character x : Gxg — F*,
where F = Fy2 or F, in the cases H = N’ or N, respectively. It thus has the
property pp g @ €5/ = Pg/g,e- The following lemma can then be shown.

Lemma 1.4. Let E/Q be a modular elliptic curve whose associated newform is
f € 52(To(NE)). Suppose im(pgq,) C H with H=N',N and { is odd. Let E' be
the twist of E by eg/q.e, and let f' be the corresponding twist of f € So(T'o(Ng)).
Then N = Ng and f' € S3(To(Ng)) is a newform.

Proof. Kraus shows in [5] that the type of reduction (good, multiplicative, additive)
of E and E’ are the same, i.e. the tame exponents ¢, of E and E’ are the same.
On the other hand, the wild exponent ¢, of £ depends only on the restriction of
PE/Qe and Pp g = Pgjge ® €pjge to the wild inertia group at p. For p > 3, the
restrictions are the same as € /q,¢ is trivial on the wild inertia at p. For p = 2, the
restrictions still have the same image. O

We say that two eigenforms f, g € So(To(IV)) are congruent modulo X if a,(f) =
ap(g) (mod M) for p { £N where )\ is a prime above ¢ of Q(a,(f),a,(g)). We say that
¢ is a congruence prime for newform f € So(I'o(N)), if there exists an eigenform
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g in the (Petersson) orthogonal complement of f such that g is congruent to f
modulo A above /.

The property that pp/ /g = Prjge ® €5/0.0 = Prjg,¢ implies the two newforms
f, /" are congruent modulo ¢. Thus the following proposition holds.

Proposition 1.5. Let E/Q be a modular elliptic curve whose associated newform
is f € S2(T'o(NE)). Suppose £ is odd and im(pg g ,) is contained in N', or N but
not C. Then { is a congruence prime for f.

In this paper, we will show that there are additional congruences between f and
C M-forms in the case N’ and discuss how the character of these C'M-forms can be
controlled under certain hypotheses.

Theorem 1.6. Let E/Q be a modular elliptic curve whose associated newform is
fe Sz(ro(NE))

Suppose im(pgqe) C N’ for 3 < £{ Np. Then there exists a newform g €
So(T1(M)) which is induced from a grossencharacter on K and is congruent to f
modulo A a prime above £ where M | Ng is the Artin conductor of P g -

Theorem 1.7. Let E/Q be a modular elliptic curve whose associated newform is
f € S2(To(Ng)) and 16 { Ng. Suppose im(pg,q ) C N’ for 3 < £ Ng. Then
there exists a newform g € So(To(M)) which is induced from a grossencharacter
on K and is congruent to f modulo A a prime above £ where M | Ng is the Artin
conductor of pg g,

I would like to thank F. Momose for mentioning to me the connection between
elliptic curves with im(pgq,) C N’ and grossencharacters on imaginary quadratic
fields (c.f. also the paper [8] from which the case of prime power Ng in Theorem 1.7
follows).

2. CONGRUENCES WITH CM-FORMS

2.1. Algebraic characters. Fix an algebraic closure Q of Q and an algebraic
closure Q; of Q. Let K C Q C Q; be a number field and denote by Dy the set of
embeddings of K into Q.

Let T/Q = Resg(Gm/K) be the restriction of scalars of G,,/K to Q. This

is a commutative algebraic group over Q, isomorphic over Q to Ggf :Q], with the
following properties.

(1) T(@Q) = £~ and T(Q¢) = (K © Q¢)* = [, Ko
(2) For all 0 € Dk, there is an algebraic character [o] : T/Q — GL; /Q such
that composite

KX =T(Q c T(@ —"— GL(Q) =T"
is given by the embedding o.

(3) Every algebraic homormorphism f : 7/Q — GL; /Q is of the form f =
[loen, [0]"(?) where n(c) € Z. The element Y vep, Mo)o € Z[Dk] is
called the weight of f and completely determines f. Given a weight k €
Z[Dk], let [k] denote the algebraic homomorphism determined by k.

2.2. Grossencharacters of type Ay. Let K C Q be a number field. For a place
v of K, let K, be the completion of K at v, m, a uniformizer of K,, and O, the
ring of integers of K, in the case v is a finite place. Let Jx be the ideles of K
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and Cx = Ji /K> the idele class group. For a modulus m of K let Uy =[], Um,»
where
—_— {ker(og — (O /mO,)) if v § 0o
™Y ] the connected component of 1 if v | oo

Let By = ker(K* — Jg/Un) denote the units congruent to 1 modulo m, and
Cn = CJUnK* be the ray class group of modulus m.

Let x : Cx — @X be a continuous character. This can be written in the form
X = [, xo where x, |O§: 1 for all but finitely-many v. The homormorphism
X : Cx — Qy is said to be locally algebraic of weight k € Z[Dg] if x¢ = Hv\é Xo

coincides with the algebraic character [—k] : ][, Ko = T(Q¢) — GL1(Qp) = Q.
of weight —k on the subgroup va Um,v. We say x has modulus m if x, coincides
with [—k] on [],, Un.v and Xu |v,,,= 1 for v { £. The smallest modulus for x is
called the conductor of x.

When ¢ = 0o, alocally algebraic character x of modulus m and weight k coincides
with the notion of a grossencharacter of type Ay of modulus m and weight k.
Theorem 2.1 (Weil, [15]). Let x be a grossencharacter of type Ag. The extension
Q(x(my) | v1oom) is a finite extension of Q called the field generated by x.
Proposition 2.2. Let k € Z[Dk| be a weight. There exists a non-trivial grossen-
character of type Ay of weight k and modulus m if and only if [k](Ew) = 1. If this
holds then there are hy such grossencharacters where hy, is the order of the class
group Ch,.

There is a natural grossencharacter of type Ay of conductor Ok and weight
> vep, 0 This is given by

wi : Cxg — R0 c C*

= [l
v

where ||z,]|| = |xv|[ and for p finite, |7,| = 1/p'/¢, and e, is the ramification
index of v | p. The character wg is trivial on K* by the product formula.

K’U:QP]

2.3. Fundamental characters. For v | { let K, be a fixed algebraic closure of
K,. This fixes an algebraic closure k, of the residue field k,. Let Ik, denote the
inertia subgroup of Gk, and I, ; its tame quotient.

A character X : Ix, + — I?UX is called a tame character. For all ¢ = £", there is
a tame character

Qg1 I, s = F) Chy
called the fundamental tame character of level n which is surjective to IFqX.

A tame character is said to have level n if its image is contained in F;* C EX,
q = £™, but no smaller finite field. The fundamental tame character of level n has
the property that any character X of level < n can be expressed as a power of ©,_;.
Suppose X is a tame character of level n and ¥ = ©7_; with 0 < a < ¢— 1.
Because of the assumption that Y has level n, not all possible a arise. We may write
the integer a uniquely in the form a = ag+a14+...+apn_10"" " where 0 < a; < £—1

n—1
— _ Nao lay 14 an—1
and hence ¥ = 0,°,0,™,...0,_, .
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Let ¥ : Ggav — EX be a character and consider its restriction to Igan. This
restriction factors to I Kb, 1O yield a tame character Y which we also denote by
X- The local class field h;)momorphism ry t K — G Kab induces an isomorphism
kX = IKS,bt so that the tame character  has level < n where ¢ = (" = #k,. We

denote by | I the character on k, obtained by precomposing the tame character
X with the local class field homomorphism. Let D, denote the set of embeddings
o, : K, — K,. For each such embedding o, let @, : k, — k, denote the associated
embedding of residue fields. We can therefore write the tame character in the
form as above X = [[, cp,. @Zﬂ(a”) where 0 < a(o,) < £ — 1. The element
> o,ens, A(00)oy € Z[Df,] is called the optimal weight of X at v.

A calculation in [13] shows that the composition

O4-1
e PR Iy

corresponds with the character 2 — 1.

3. ADJUSTMENT TO OPTIMAL LEVEL AND WEIGHT

Proposition 3.1. Let Q C K C Q be an imaginary quadratic field whose set of
embeddings to Q is denoted by Di = {1,7}. Let X : G — Fié be a continuous
character with Artin conductor m and let X : Cx — C* be its Teichmdiller lift
considered as a continuous character of C'x. Suppose that

(1) £ is inert in K
_ —1
(2) X =1
Then there exists a grossencharacter x of type Ag with conductor m and weight 1

and a prime A above € in the field generated by X and x such that X(m,) = x(m,)
(mod A) for all vt oofm.

Proof. By the global class field homomorphism rx : Cx — Gga» we may regard
both ¥ and X as continuous characters of Cx and can write ¥ = [[, X, and ¥ =
[1, Xo where X, and X, are characters of K. By comparing X, and X, place by
place we see that Y has conductor m¢ and weight 0.

Let u € By = KX NUy. Since X is trivial on K, x(u) = 1. On the other hand,

—1

we also have Y |kg< (w) =[] (u)=u"'and X |v,, (u) =1 for v # ¢ Thus,
we have that u =1 (mod ¢). As K is imaginary quadratic and ¢ > 5, this implies
u=1.

Since Ey, is trivial, there exists a grossencharacter ¢ of type Ay with modulus
m and weight 1. Write ¢ = [[, ¢,. As ¢ has weight 1, ¢o(2) =Z. Let 0 : Jx —

@X,d =[], 0» be defined as follows. For v t ool, let 6, = ¢y, and define doc = 1,

d¢ = ¢,[1]71. By construction, & factors to a character of Cx. Let 0 : O — EX
be the reduction of § modulo a prime X above ¢ of the field generated by § (which
is the same as the field generated by §), and let 5 : Cx — € be the Teichmiiller
lift of 0 _

The desired grossencharacter of type Ag is then y = X0 '¢. The weight of x
is 1 and it evidently has modulus mf. In fact, xy has conductor m. Since x, =

— 1

~ 7 ~—1 . .
Ned, e = [1] [1l¢e ¢ we see that x, is trivial on O;. Thus, x has modulus
m. To see that x has conductor precisely m, consider the character y : Cx — @X
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given by x = X616 which has the same conductor as x. Since y reduces modulo
A to X having Artin conductor m, it follows that m divides the Artin conductor of
x as the Artin conductor can only decrease under reduction modulo A.

For v { oolm, x(my) = Xo(m0)0y (7)o () = %v('ﬁv)&jl('ﬁv)(ﬁv(ﬂ'v) = Xo(m)

(mod A) where X is a prime of the field generated by X and § above . O

4. PROOF OF THEOREM 1.6

Let E/Q be a modular elliptic curve whose associated newform is f € Sy(T'o(Ng)).
Suppose im(pg ) C N’ for 3 < £{ Ng. Then pg /g, = Ind? X is induced from
a character ¥ : Gg — IFZXQ on the imaginary quadratic field K associated to such a
PE/q,e- Since {1 N, the argument in [13] p. 317 shows that £ is inert in K.

Let us briefly recall the definition of the Serre’s optimal weight attached to this
particular pg/q [14]. Identifying Gg, with a decomposition subgroup at ¢ of G,
the restriction of pg /g ¢ to Ig, factors through its tame quotient Iy, and is semi-
simple. Since ¢ is unramified in K, Iy, C Gk so that

_ (X 0
PE/Q,e ‘IQK_ 0 ¥
where X'(g) = X(7tg7).

Both Y and Y’ are tame characters of level 2 so that x* = x’. Write Y = @Z"j{e’“
where ¢ = (? = #k and 0 < ag,a; < £ — 1. Since P/, 1s induced from either x
or Y, up to switching X’ for Y we may assume a > b. The optimal weight is defined
as k = 1+ ag + fa;. Since ¢ { Ng, Proposition 4 of [14] implies that k£ = 2 and so
ap =1,a1 = 0 in our situation. Thus, we see that X [, x= Iy

Let x be the Teichmiiller lift of ¥. By Proposition 3.1, there exists a grossen-
character x of type Ay with conductor m and weight 1 such that x(m,) = X ()
(mod A) where A is a prime above ¢ of the field generated by X and .

Let I(m) denote the group of fractional ideals of K prime to m. For an ideal
a € I(m) denote by [a] the idele ], 7" associated to the ideal a = [, P57,
p, is the prime of K associated to the finite place v, and m, is any choice of
uniformizer for K,,.

Theorem 4.1 (Hecke). Let K C Q be an imaginary quadratic field with discrim-
inant dg and let D = {1,7} denote its embeddings into Q. Let x be a grossen-
character of type Ay on K with conductor m and weight k = u -1 € Z[Dk],u > 0.
Consider g(2) = X qer(m) x([a])q(2)Nx (@) where q(z) = €2™*. Then g is a newform
on Su+1(To(M),€) where M = Ng(m)|dk| and & : (Z/MZ)* — C* is defined by
£= GK%. Here e : Cy — {£1} is the character defining K and Ver : Cg — Ck

is the Verlagerung map.

Proof. c.f. Theorem 4.8.2 [7] (but note Miyake normalizes his grossencharacters so
they are unitary) O

Let g(z) = Zael(m)x([a])q(z)NK(“) € S5(T'1(M)) be the newform constructed
from x as in the theorem above. Let p { M be a prime and Fr, € Gg a Frobenius
element at p. If p is inert in K, then Fr, ¢ Gk so that a,(f) = trpg g (Frp) =
tr(Ind% X)(Fr,) = 0 = a,(g) (mod A). If p is split in K with v; | p being the two
places above p, then Fr, € Gk so that a,(f) = trpg g, (Frp) = tr(Ind% X)(Frp) =
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Y(Frp) +Y(T Frp Tﬁl) = Y(ﬂ-'l)l) +Y(7TU2) = X(WU1)+X<7TU2) = ap(g) (mOd >\) Thus,
ap(f) = ap(g) (mod A) for pt M.

Lemma 4.2. Let £ be a prime which is inert in an imaginary quadratic field K C Q
with its set of embeddings denoted by Dy = {1,7}. LetY: Gx — IE‘ZX2 be a character

with Artin conductor m(Y) prime to £ and suppose p = Ind%? is irreducible. If we
denote by N(p) the Artin conductor of p, then

N(p) = (dx )Nk (m(X))-

Proof. Let X : Gg — L* C C*,L = Q(¢,),n = £> — 1 be the Teichmiiller lift
of X, and let p = Ind2 §. By [12] VL3 Proposition 6, N(p) = (dx)Nx(m(X)) =
(dK)EQNKm(X) - B

Let us compare N(p) = [[,,p® and N(p) = [], ., p (as £ N(p)). The
quantities €, and €, are defined as

- #ﬁ(Gp,i) _ i 5Gp.i
ep = ;:0 #5(Goy o) (2 —dimp~r?)
- #PGCi) o
€p ZE:O #ﬁ(G:,o) (2 — dim p~»?)

where G ; denotes the i-th ramification group of a decomposition group at p,
indexed so that Gj o is the inertia subgroup at p.

Our aim is to show that N(p) is the prime to ¢-part of N(p) and hence equal
to N(p) = (dx)Ng(m(xX)). It suffices from the definitions of €, and €, to show
that dimp = dim p for any given subgroup H of Gg. Let V =L Lt be
the representation space of p and let A = Or, @ Op7 be the natural Gg-invariant
lattice lying inside V. For any prime A above £ of L, the Fy2-vector space A/AA is
isomorphic to p.

If H is a given subgroup of Ggp, then we see from the description of p as a
reduction of p that dim p” < dim 5. To show equality, we first show that given a
non-zero 5 € V' it is possible to find a lift v € A¥ ie. v € AH 5 =7 (mod AA).
To do this write v =% + y7 and let H; = H NGk and Hy, = HN7Gk.

Suppose both Z,3 # 0. For every h € Hy, p(h)(®) = x(h)T+X (h)yr =T +7yr =
v. It follows that x(h) = X'(h) = 1 for all h € H;, and hence p(h) = 1 for all
h € Hi so that any lift of v is invariant under h € H;. For every h = 70 € Ho,
p(h) (@) =X(0)y + X (0)Zr =T +yr =7v. Thus, X(0)y =T and X'(0)T = 7 for all
h = 70 € Hy. Note this implies that X(¢), X (c), X(c), X' (c) are constant as h = 70
varies in Hy. Let g € O, be any lift of 7. Define = X(¢)y and ¥ = Z + y7. Then
also X'(0)x =y, and hence p(h)(v) = v for all h € H,.

Suppose one of T,y = 0. If there exists an element h = 70 € Hj, then arguing
as above, we have that X(c)y = T and X'(¢)T = . But then implies both Z,7 = 0
contradicting T # 0. Hence, we must have H C Gg. Again, arguing as above, we
see that p(h) = 1 for all h € H and so any lift ¥ of ¥ lies in AH.

The equality dimp" = dim p™ now follows by picking a lift as above for each

element of a basis of VH to form a basis for V# of the same size. O

From the above lemma, it follows that M = Nk (m) |dk| is the Artin conductor
of pg /g, which divides Npg.
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5. PROOF OF THEOREM 1.7

In this section, we show that the grossencharacter x used to prove Theorem 1.6
can adjusted (in certain situations) so that it has the additional property that the
character { : (Z/MZ)* — C* of the associated newform g(z) = 3_ ¢ (m) x([a])q(z) V= (2)
is trivial.

The Verlagerung map Ver : Cy — Ck is defined by Ver = Hp Ver,,, where Ver,, is
the natural map Q, — (K ® Q,)* (here p = oo is included). By Theorem 4.1, the
xoVer

character ¢ is given by the formula £ = eg . If x is a grossencharacter on K of

weight k = ag+a17 and modulus m, then yoVer is a grossencharacter on QQ of weight
ap+a; and modulus Nk (m). Thus, the expression for £ is indeed a grossencharacter
of Q of weight 0 and modulus M and hence factors to Cg p = (Z/MZ)*.

Proposition 5.1. Let H C G be finite abelian groups. Let v be the unique valuation
of Q; extending that of Qp. Suppose f : H — @X is a character such that such

that v(f(h) — 1) > 0 for all h € H. Then there exists a character ' : G — Q.
extending f such that v(f'(g) — 1) > 0 for all g € G.

Proof. The main idea of the proof is to mimic the proof of Baer’s criterion (c.f. [3]).
We shall write the abelian groups H C G additively. The first step is to show the
following intermediate result.

Let f:mZ — Q;  be a homomorphism such that f (m) is a root of unity and

v(f(m) — 1) > 0. Then there exists a homomorphsim f : Z — Q, = extending f
such that f(1) is a root of unity and v(f(1) —1) > 0. To show that f exists, choose
a root of unity x € Q, such that 2™ = f(m). Let L = Qu(z), K = Q(f(m)),
with A | £ the unique primes of L, Q, corresponding to the restrictions of v to these
fields. Let T be the reduction of £ modulo A and let & denote the Teichmiiller lift
of this reduction to Q; . Since 2™ = fim) =1 (mod A), we see that z™ = 1, so
T is an m-th root of unity in Q. Now, (x/Z)™ is also equal to f(m) but x/7 is
congruent to 1 modulo \. We define f by f(1) = x/7.

Let f: H— Q" be given such that v(f(h)—1) > 0for all h € H. There exists a
maximal extension f : H — Q,  extending f : H — Q,  such that v(f(h)—1) >0
for all h € H. If H = G, then we are done. If H is strictly contained in G, then let
a € G such that a ¢ H. Consider the ideal a = {7‘ €Z:rae F} of Z. We define a

homomorphism fj : a — @X by fo(r) = f(ra). By the intermediate result above,
there is an extension f : Z — Q; - such that v(fy(1) — 1) > 0. Let u = f,(1). We

now define f'(z +ra) = f(z) - u", where z € H, and r € Z. This is well-defined
since if 4+ ra = 0, then r € a, and hence f(z)-ru= f(x)- f(ra) = f(x +ra) = 0.
Now, f’ extends f to H' =< H,a > still keeping the property v(f’(h’) —1) > 0 for

all i’ € H', contradicting the maximality of f. O

Let Ver : Cgn — Ck m be the homomorphism induced by Ver on ray class
groups.

Corollary 5.2. Let £ : Co,m — C* be a character such that € is trivial on the
kernel of Ver and & = 1 (mod \) for A a prime above { of the field generated by
&. Then there exists a character v : Cgm — C* such that 9 oVer =¢ and ¢ = 1
(mod M).



SURJECTIVITY AND CONGRUENCE PRIMES 9

Let x be as in the proof of Theorem 1.6 and let £ = GK%\:”. Assume ¢!
satisfies the requirements of the corollary above and let ¥ be the character extending
the character £~! from the corollary. The character ¥’ = x also satisfies the
requirements for Theorem 1.6, but now the character of the associated newform g’
becomes

poVer=¢ =1.

& =ex =¢
wQ
Since py, = p, 5 (mod A), it follows that £ =1 (mod \) as the character of f
is trivial. Thus, to prove Theorem 1.7, we need only verify that £ is trivial on the
kernel of Ver.
Let my : Cg — Cg, v denote the quotient map. Let x € Cg such that Ver(ry (x)) =
1. This means that Ver(z) = u-k € Ugm - K*. Now, x(u-k) = x(u) = Xoo (o) =

Uso- On the other hand, wg = w}(/z and wi (u - k) = wo(u) = Wik 0o(Ueo) = ui.

X o Ver x o Ver
K
w

Hence, %Zer considered as a character of Cg, s is trivial on the kernel of Ver.

Thus, it remains to show that e is trivial on the kernel of Ver. The class group
Co,m = (Z/MZ)*. Given an element g € Cg, s, there exist infinitely many primes
g such that § = ¢g (mod M) by the Cheboterov density theorem. The character

dx

ex considered as a character of Cg s can then be described by ¢q +— (T) Let

g € Cg.ur be such that Ver(g) = 1 and let us represent g = g for an odd prime g.
The property Ver(g) = 1 implies that ¢ = 1 (mod p) for every prime p { N (m).
Assume now that 2 { dg so that dxg =1 (mod 4) is square-free. From [13] §5.8,
we deduce that
(1) The character ex = €p/qg, is unramified outside p | Ng because of the
condition 3 < £t Ng.
(2) Furthermore, if ptdg, then p? | Ng.
Thus, since di is square-free, it follows that if p | dx, then p | Ng/dk. But
then p | N (m) as only semi-stable primes can be stripped from Ng (c.f. [14] §4.6).

Thus, we have
dK> g=1dg—1 ( q )
€ = _ = —1 2 2 _— = 1
K(Q) ( q ( ) dx

as dxg = 1 (mod 4) and ¢ = 1 (mod p) for each p | Nx(m). Given the following
lemma, Theorem 1.7 is now proved.

Lemma 5.3. Let E/Q be an elliptic curve with conductor Ng and suppose im(ﬁE/Qe) C
N’ for £ odd. Let K be the imaginary quadratic field associated to such PE/.e- If
161’NE then QTGZK.

Proof. Let ®3 = P/ ¢(I2) be the image of inertia at 2. Then ®; can be considered
as a subgroup of SLa(FF5) with order restricted to 1,2,3,4,6,8,24 [13]. If #Po =
1,2,3,6, then under the assumption £ odd, we have that 2 { dx by [13] §5.8. In
fact, if #®Po = 24, then 2t di as SLa(F3) cannot be embedded into the normalizer
of a non-split Cartan subgroup N'.

If #®5 = 4 and 2 | dg then #pg /g (G20) = #Pp/g,(Ge,1) = 4 which implies
the Artin exponent e, of p /g, is > 4. Similarly, if #®, =8, then also e, > 4. U

6. CONCLUSIONS

It is known that Sg " contains the primes 2, 3,5,7,11. For instance, the modular
curves X (¢) /N’ (which classify up to twist those E/Q with £ € S g/lQ) are isomorphic
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to P1/Q in the cases ¢ = 3,5,7. It is possible to give explicit equations for such
elliptic curves [2]. On the other hand, X (11)/N’ is the elliptic curve 121D which has
rank 1 so there are infinitely-many E/Q (non-isomorphic over Q) with 11 € Sg//Q.
Explicit examples of such elliptic curves seem to be unknown however.

A naive search among elliptic curves E/Q with integral j-invariant having ab-
solute value less than 800,000 only give rise to the primes 2,3,5 in Sg/ U Sg. It
would be interesting to gather further computational data regarding the sets Sg
and S(g ' especially in relation to congruence primes. For instance, the following is

an example illustrating the Theorems shown in this paper.
Consider the elliptic curve 4176 N = E/Q : y? = 23 — 31052 + 139239 from Cre-

mona’s tables [4]. Its discriminant, j-invariant, and conductor are A = —243929°

j = —10512288000,/20511149 = 283353233 /295, and N = 4176 = 243229, respec-
3 2 3

tively. Because the j-invariant is of the form 125t(2t+(1t)2§r2:7;r)75t+8) for t = —4/5,

the explicit parametrization of X (5)/N’ in [2] implies that 5 € Sg//(@. Since E/Q is
semi-stable at 29 and the exponent of 29 in A is divisible by 5, by Ribet’s theorem
[11], p, is modular of level 144 = 2432, Indeed, there is a newform g at level 144
which is congruent modulo 5 to the newform f at level 4176 = 144 - 29 attached to
E/Q. The first few fourier coefficents a,, for p prime are given below (for p dividing
the level, the signs of the action of the Atkin-Lehner involution W, are given).

a‘P(g) = [_a +7Oa4a 0) 2707 _87 070747 _1Oa 0) _87()’ Oa cee
ap(f) = [7’ +707 717 757 737 57 270a +7 765 105 10, 25 s

The newform ¢ corresponds to the isogeny class of elliptic curves 144A which
have complex multiplication by v/—3, so g is induced from a grossencharacter on
the imaginary quadratic field Q(v/—3).
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