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Abstract. The peak sidelobe level (PSL) of a binary sequence is the largest

absolute value of all its nontrivial aperiodic autocorrelations. A classical prob-
lem of digital sequence design is to determine how slowly the PSL of a length n

binary sequence can grow, as n becomes large. Moon and Moser showed in

1968 that the growth rate of the PSL of almost all length n binary sequences
lies between order

√
n log n and

√
n, but since then no theoretical improvement

to these bounds has been found.

We present the first numerical evidence on the tightness of these bounds,
showing that the PSL of almost all binary sequences of length n appears to

grow exactly like order
√

n log n, and that the PSL of almost all m-sequences

of length n appears to grow exactly like order
√

n. In the case of m-sequences,
a key algorithmic insight reveals behaviour that was previously well beyond

the range of computation.

1. Introduction

One of the oldest problems of digital sequence design, dating from the 1950s, is to
determine those binary sequences whose aperiodic autocorrelations are collectively
small (see [12] and [14], for example). A sequence A of length n is an n-tuple
(a0, a1, . . . , an−1), and the sequence is binary if each ai takes the value −1 or 1.
The aperiodic autocorrelation of the binary sequence A at shift u is given by

CA(u) :=
n−u−1∑

i=0

aiai+u for u = 0, 1, . . . , n− 1.

The measure of smallness of the aperiodic autocorrelations considered in this paper
is the peak sidelobe level (PSL), given by:

M(A) := max
0<u<n

|CA(u)| for n > 1.
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An alternative measure of smallness is the merit factor, given by

F (A) :=
n2

2
∑n−1

u=1[CA(u)]2
for n > 1

(see [4] for a survey).
We define Mn to be the optimal value of the PSL over the set An of all binary

sequences of length n:
Mn := min

A∈An

M(A).

The numerical value of Mn is known for n ≤ 70 by exhaustive computer search (see
[5] for a summary of results). Our principal interest, however, is in understanding
the behaviour of Mn as n → ∞. A classical result shows that the growth rate of
the PSL of almost all binary sequences lies between order

√
n log n and order

√
n:

Theorem 1 (Moon and Moser 1968 [10]).
(i) For any fixed ε > 0, the proportion of sequences A ∈ An such that M(A) ≤

(2 + ε)
√

n log n approaches 1 as n →∞.
(ii) If K(n) is any function of n such that K(n) = o(

√
n), then the proportion of

sequences A ∈ An for which M(A) > K(n) approaches 1 as n →∞.

(We use the notation o, O, Ω and Θ to compare the growth rates of functions
f(n) and g(n) from N to R+ in the following standard way: f is o(g) means that
f(n)/g(n) → 0 as n →∞; f is O(g) means that there is a constant c, independent
of n, for which f(n) ≤ cg(n) for all sufficiently large n; f is Ω(g) means that g is
O(f); and f is Θ(g) means that f is O(g) and Ω(g).)

The functions
√

n log n and
√

n in Theorem 1 are upper and lower bounds on
the order of the growth rate of the PSL of almost all binary sequences. This paper
is concerned with the tightness of these bounds. It is straightforward to show that
the upper bound O(

√
n log n) does not apply to all binary sequences: for example,

the PSL of the all-ones sequence of length n is n − 1. However it is possible that
the upper bound, applying to almost all binary sequences, can be improved. We
therefore ask:

1. Does the PSL of almost all binary sequences grow like o(
√

n log n)?
Turning to the lower bound Ω(

√
n), it is an open question as to whether this lower

bound applies to all binary sequences. We know that if the PSL of a family of
binary sequences were to grow more slowly than order

√
n, then the asymptotic

merit factor of this family would be unbounded:

Proposition 2 (Jedwab and Yoshida 2006 [5]). Let B be a family of binary se-
quences and let each An ∈ B have length n. If lim infn→∞(M(An)/

√
n) = 0 then

lim supn→∞ F (An) = ∞.

However the existence of a family of binary sequences with unbounded asymptotic
merit factor is considered very unlikely by most (although not all) authors [4].
Assuming there is no such family, the most testing question for the lower bound
becomes:

2. Is there a family of binary sequences whose PSL grows like Θ(
√

n)?
There are currently no known methods to answer these two questions with cer-

tainty. More remarkably, nearly forty years after Theorem 1 appeared, there is
still no proof that the PSL of any specific family of binary sequences grows like
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O(
√

n log n), even though this is true of almost all binary sequences! Indeed, the
strongest result to date is that the PSL of m-sequences grows like O(

√
n · log n)

(see Theorem 4).
In this paper we present the first experimental evidence that the answers to the

above two questions are “no” and “yes” respectively. Specifically, we show numeri-
cally that the PSL of almost all binary sequences appears to grow like Θ(

√
n log n),

and that the PSL of almost all m-sequences appears to grow like Θ(
√

n). We also
show that the PSL of all m-sequences appears to grow like O(

√
n · log log n).

This rest of this paper is organised as follows. Section 2 examines the growth rate
of the PSL of randomly-selected binary sequences numerically. Section 3 reviews
the definition and properties of m-sequences. Section 4 gives an efficient calculation
method for the maximum PSL over all cyclic shifts of a given m-sequence. Section 5
applies this method to study the growth rate of the PSL of m-sequences up to length
225 − 1 numerically. Section 6 summarises the results of the paper.

2. The growth rate of the PSL of randomly-selected binary
sequences

In this section we investigate numerically the growth rate of the PSL of randomly-
selected binary sequences. Rather surprisingly, such a study does not appear to have
carried out previously (to our knowledge).

For each value of m ∈ {2, 2.5, 3, 3.5, . . . , 24.5}, a randomly-selected subset Z2m−1

of the binary sequences A2m−1 of length 2m − 1 (rounded to the nearest integer)
was chosen. (For integer values of m, these sequence lengths have the same form as
those of the m-sequences studied in later sections.) The “cryptographically random
number generator” CryptGenRandom()1 was used to control the subset selection,
in order to minimise any influence of the random number generation algorithm on
the PSL properties of the resulting sequences.

For each length n = 2m−1, the PSL of each sequence Z ∈ Zn was calculated and
compared with the Moon and Moser upper bound 2

√
n log n (see Theorem 1 (i)).

Figure 1 shows the variation of meanZ∈Zn M(Z)/(2
√

n log n) with log n. The error
bars show one standard deviation (as estimated from the data) above and below
the mean value. The number |Zn| of binary sequences of length n selected, as given
in Table 1, was chosen to be sufficient to make the trend of the graph clear. The
graph appears to be a (broadly) increasing function (which is bounded above by
1, from Theorem 1 (i)). We conclude empirically that the mean PSL of binary
sequences of length n grows like Ω(

√
n log n) and therefore, by Theorem 1 (i), that

the PSL of almost all binary sequences of length n grows like Θ(
√

n log n).

Assuming this to be true, the bounding function
√

n log n of Theorem 1 (i) cannot
be improved, although a reduction in the growth constant 2 + ε might be possible.
(It is clear from Theorem 1 (i) that for any fixed ε > 0, Mn ≤ (2 + ε)

√
n log n

when n is sufficiently large. The constant in this latter bound was improved from 2
to
√

2 by Mercer [8], but his proof applies only to Mn and not to almost all binary
sequences.)

1supplied as part of the Microsoft Strong Cryptographic Provider, and described at
http://msdn2.microsoft.com/en-us/library/aa379942.aspx
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3. m-sequences

In this section we review the definition and properties of m-sequences.
Let f(x) = 1+

∑m
i=1 cix

i be a primitive polynomial of degree m > 1 over GF(2).
Let (a0, a1, . . . , a2m−2) be a 0/1 sequence of length 2m − 1 whose first m elements
take arbitrary values (not all zeroes), and whose subsequent elements satisfy the
linear recurrence relation

ai :=

 m∑
j=1

cjai−j

 mod 2 for m ≤ i < 2m − 1.

Then the binary sequence Y = (y0, y1, . . . , y2m−2) of length 2m − 1 defined by
yi = (−1)ai for 0 ≤ i ≤ 2m− 2 is a maximal length shift register sequence, often ab-
breviated to m-sequence (and also called an ML-sequence or pseudonoise sequence).
The period of Y is 2m − 1, and the sum

∑2m−2
i=0 yi of all the elements of Y is −1.

Write Yf for the m-sequence generated by f(x) whose first m elements equal a
specified m-tuple, say the m-tuple of all −1’s.

Given a sequence (ai) of length n, regard any expression for the sequence sub-
script to be reduced modulo n, so that ai+n = ai for all i. The kth cyclic shift of
a length n sequence A = (ai) is the length n sequence

T k(A) := (ai+k).

All 2m − 1 cyclic shifts {T k(Yf ) : 0 ≤ k < 2m − 1} of the m-sequence Yf are m-
sequences. The set Fm of primitive polynomials of degree m over GF(2) has order
φ(2m−1)

m , and the set

(1) Ym := {T k(Yf ) : f ∈ Fm, 0 ≤ k < 2m − 1}

of all m-sequences of length 2m − 1 has order φ(2m−1)
m · (2m − 1). Golomb and

Gong [3], in an update to the classic reference [2], give details of these and many
other properties of m-sequences, including alternative definitions using the trace
function or a cyclic Singer difference set.

Since the asymptotic merit factor of all m-sequences is 3 [6], by Proposition 2
we have:

Corollary 3. The PSL of all m-sequences of length n grows like Ω(
√

n).

In 1980 McEliece [7] established the strongest known upper bound on the growth
rate of the PSL of m-sequences, namely O(

√
n · log n), and the growth constant was

later reduced from 1 to 2/π:

Theorem 4 (Sarwate 1984 [11]). Let Y be an m-sequence of length n. Then

M(Y ) < 1 +
2
π

√
n + 1 log

(
4n

π

)
.

The method of [7] and [11] involves estimation of the maximum absolute value of
an incomplete exponential sum, using results obtained in 1918 by Vinogradov and
by Pólya (see Tietäväinen [13] for an overview of this method).

The only proven results for the PSL of m-sequences of length n = 2m − 1 are,
as above, that the growth rate is Ω(

√
n) and O(

√
n · log n). Jedwab and Yoshida

[5] investigated widespread claims, dating from the 1960s, that the actual growth
rate for some or all m-sequences is O(

√
n) (and therefore Θ(

√
n)), but concluded
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that there is no theoretical basis for these claims. Based on exhaustive results for
m ≤ 15 and partial results for 16 ≤ m ≤ 20, they found no experimental basis
either: the strongest empirical conclusion supported by these data, for the mean
PSL over all m-sequences of length n, is a growth rate of O(

√
n log n).

4. The maximum PSL over all cyclic shifts of an m-sequence

Rather than seeking to calculate the mean PSL of all m-sequences of a given
length, in this section we consider how to calculate efficiently the maximum PSL
over all cyclic shifts of a given m-sequence. This leads to our main theoretical
result, Theorem 7, whose proof depends on the following two lemmas.

Lemma 5. Let Y = (yi) be an m-sequence of length n, and let u ∈ {1, 2, . . . , n−1}.
Then there is an integer r = r(Y, u) ∈ {1, 2, . . . , n− 1} such that

(2) yiyi+u = yi+r for all i,

and

(3) {r(Y, u) : 1 ≤ u ≤ n− 1} = {1, 2, . . . , n− 1}.

Proof. Write (yi) = ((−1)ai), so that (ai) is the 0/1 m-sequence corresponding
to Y . Then (2) is equivalent to

ai + ai+u ≡ ai+r (mod 2) for all i,

which holds for some r in the given range by the well-known “shift-and-add prop-
erty” of 0/1 m-sequences (see [3, Theorem 5.3], for example).

We prove (3) by showing that r(Y, u) = r(Y, u′) for u, u′ ∈ {1, 2, . . . , n − 1}
implies u = u′. By (2), r(Y, u) = r(Y, u′) implies that

yiyi+u = yiyi+u′ for all i,

so that yi+u = yi+u′ for all i. Since Y has period n, and by assumption u, u′ ∈
{1, 2, . . . , n− 1}, we deduce that u = u′ as required.

Given a length n sequence A = (a0, a1, . . . , an−1), define

SA(j) :=
j−1∑
i=0

ai for j = 0, 1, 2, . . .

to be the (running) sum of the first j elements of A (and take SA(0) := 0), and
define

W (Y ) := max
0≤k<n

M(T k(Y ))

to be the maximum PSL over all cyclic shifts of A. We now use Lemma 5 to express
W (Y ) for a given m-sequence Y in terms of the function SY . The reason for taking
the maximum, rather than the mean or minimum, PSL over all cyclic shifts is that
this maximum can be interchanged with the maximum in the definition of M(A).

Lemma 6. Let Y be an m-sequence of length n. Then

(4) W (Y ) = max
0<u<n, 0≤c<n

∣∣SY (c + u)− SY (c)
∣∣.
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Proof. Write Y = (yi). By definition of W (A), M(A), CA(u), and T k(A),

W (Y ) = max
0≤k<n

max
0<u<n

∣∣CT k(Y )(u)
∣∣

= max
0<u<n, 0≤k<n

∣∣∣∣∣
n−u−1∑

i=0

yi+kyi+k+u

∣∣∣∣∣
= max

0<u<n, 0≤k<n

∣∣∣∣∣
n−u−1∑

i=0

yi+k+r(Y,u)

∣∣∣∣∣ ,

by Lemma 5. Then by (3),

W (Y ) = max
0<u<n, 0≤k<n

∣∣∣∣∣
n−u−1∑

i=0

yi+k+u

∣∣∣∣∣
= max

0<u<n, 0≤k<n

∣∣∣∣∣
u−1∑
i=0

yi+k+n−u

∣∣∣∣∣ ,

replacing u by n − u. Put c = k + n − u, and then replace the resulting range
for c by a more convenient range of n consecutive integers (using the fact that the
sequence (yi) is periodic, with period n), to obtain

W (Y ) = max
0<u<n, 0≤c<n

∣∣∣∣∣
u−1∑
i=0

yi+c

∣∣∣∣∣
= max

0<u<n, 0≤c<n

∣∣SY (c + u)− SY (c)
∣∣

by definition of SY .

We now show how to use Lemma 6 to determine W (Y ) for a given m-sequence Y
of length n, by means of a single pass through the sequence. To illustrate the
method, consider the m-sequence

Y = (+−−−−+−+−−+ +−+ +),

(using + to represent the sequence element 1, and − to represent −1) of length
n = 15, which is generated by the primitive polynomial f(x) = 1 + x + x4. By
direct calculation we find the maximum value W (Y ) of the PSL over all 15 cyclic
shifts of Y to be 5 (attained by CT 8(Y )(6) = −5). From the plot of SY (j) for
0 ≤ j < 30 shown in the upper graph of Figure 2, we see that the right hand side of
(4) equals |SY (1 + 9)− SY (1)| = | − 4− 1| = 5, in accordance with Lemma 6. Now
the right hand side of (4) (and therefore the value of W (Y )) could alternatively
be evaluated as the difference between the maximum and minimum value of SY (j)
over the range 0 ≤ j < n, namely SY (1) − SY (10), because this maximum value
occurs to the left of the minimum value (1 < 10). On the other hand, suppose that
we instead choose a different cyclic shift of Y , namely

Y ′ = (−+ +−+ + +−−−−+−+−)

and consult only the resulting plot of SY ′(j) shown in the lower graph of Figure 2.
The difference between the maximum and minimum value of SY ′(j) is SY ′(7) −
SY ′(1) = 4, which does not give the correct value of W (Y ′). The reason for this is
that the maximum value of SY ′(j) in the range 0 ≤ j < n lies to the right of the
smallest j at which the minimum occurs (7 > 1). But since we know that the sum
of all elements of an m-sequence is −1, we can add one to this difference to obtain

Advances in Mathematics of Communications Volume 00, No. 0 (2007),
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5 = SY ′(7)−SY ′(1) + 1 = SY ′(7)− (SY ′(16) + 1)− 1 = SY ′(7)−SY ′(7 + 9), which
is the correct value of the right hand side of (4) for Y ′ (with corresponding values
u = 9, c = 7).

In general, given an m-sequence Y of length n, we can use this method to
determine the value of W (Y ), as either the difference between the maximum and
minimum value of SY (j) over 0 ≤ j < n or as one more than this difference, without
having to consider all cyclic shifts of Y . We now give a formal statement and proof
of this result.

Theorem 7. Let Y be an m-sequence of length n. Let j1 be the largest integer j
in the range 0 ≤ j < n for which max0≤j<n SY (j) is attained, and let j2 be the
smallest integer j in the range 0 ≤ j < n for which min0≤j<n SY (j) is attained.
Then j1 6= j2 and

(5) W (Y ) =

{
SY (j1)− SY (j2) if j1 < j2,

SY (j1)− SY (j2) + 1 if j1 > j2.

Proof. The values j1 and j2 are uniquely defined, and j1 6= j2 (otherwise n = 1),
so exactly one of the cases j1 < j2 and j1 > j2 holds. Writing Y = (yi), for all j
we have

SY (j + n) = SY (j) +
j+n−1∑

i=j

yi

= SY (j)− 1,(6)

since the sum of the n elements of Y is −1.
Now

max
0<u<n, 0≤c<n

∣∣SY (c + u)− SY (c)
∣∣ ≤ max

0≤j<2n
SY (j)− min

0≤j<2n
SY (j)

= max
0≤j<n

SY (j)− min
n≤j<2n

SY (j),

by (6), and using (6) again we obtain

max
0<u<n, 0≤c<n

∣∣SY (c + u)− SY (c)
∣∣ ≤ max

0≤j<n
SY (j)−

(
min

0≤j<n
SY (j)− 1

)
= SY (j1)− SY (j2) + 1,

by the definition of j1 and j2. By Lemma 6 it is therefore sufficient to exhibit
integers c and u satisfying

(7) 0 ≤ c < n and 0 < u < n

such that

(8)
∣∣SY (c + u)− SY (c)

∣∣ =

{
SY (j1)− SY (j2) if j1 < j2,

SY (j1)− SY (j2) + 1 if j1 > j2.

Case 1: j1 < j2.: Take c = j1 and u = j2 − j1 so that the inequalities (7) are
satisfied, and then∣∣SY (c + u)− SY (c)

∣∣ = SY (j1)− SY (j2).

Advances in Mathematics of Communications Volume 00, No. 0 (2007),
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Case 2: j1 > j2.: Take c = j1 and u = j2− j1 + n so that (7) is again satisfied,
and by (6) we have∣∣SY (c + u)− SY (c)

∣∣ =
∣∣SY (j2 + n)− SY (j1)

∣∣
=

∣∣SY (j2)− 1− SY (j1)
∣∣

= SY (j1)− SY (j2) + 1.

Combination of cases 1 and 2 gives (8), as required.

Theorem 7 gives a key computational advantage over previous approaches. It al-
lows us to determine the maximum PSL over all cyclic shifts of a given m-sequence Y
in O(n) operations. By contrast, the best previous algorithm involved an initial
calculation of the aperiodic autocorrelations of Y , followed by an updating of all
the autocorrelations in O(n) operations for each of the n cyclic shifts, for a total
of O(n2) operations (see [5, Section IV] and [4, Section 3.2]). The reduction in
complexity from O(n2) to O(n) operations, for each of the φ(2m − 1)/m cyclically
inequivalent m-sequences of length n = 2m−1, allows us to extend significantly the
range of computation. (In fact we need examine only half this number of cyclically
inequivalent m-sequences for m > 2, corresponding to one member of each pair of
reciprocal primitive polynomials, as in [5, Section V].) This in turn reveals trends
in the growth rate of the PSL of m-sequences that were previously well beyond
reach, as we shall see in Section 5.

5. The growth rate of the PSL of m-sequences

In this section we use Theorem 7 to study the growth rate of the PSL of m-
sequences of length up to 225 − 1 numerically.

As in Section 3, let Fm be the set of primitive polynomials of degree m over
GF(2), and let Ym be the set of m-sequences of length n = 2m − 1. Jedwab and
Yoshida [5] calculated the minimum, mean, and maximum value of M(Y ) over all
Y ∈ Ym for m ≤ 15, and concluded empirically that the mean PSL of m-sequences
grows like Ω(

√
n) and like O(

√
n log n). They suggested [5, p. 2253] that “it would

be challenging to collect sufficient computational data to settle [the question as to
whether the PSL of m-sequences grows like Θ(

√
n)] with reasonable confidence.”

Nonetheless, we were able to show experimentally that in fact the PSL of almost
all m-sequences appears to grow like Θ(

√
n), as we now describe.

Table 2 lists the minimum, mean and maximum value of M(Y ) over all m-
sequences Y ∈ Ym for m ≤ 17. These results extend to degrees 16 and 17 the
exhaustive results given in [5, Table I], reflecting larger computational time rather
than algorithmic improvement. Figure 3 shows the variation of the minimum, mean
and maximum value of M(Y )/

√
n with log n for m ≤ 17. The additional data for

m = 16 and 17 in Figure 3 do not change the conclusion reached in [5]: the PSL
of m-sequences appears to grow like Ω(

√
n), but we cannot tell whether it grows

like Θ(
√

n).
The data of central interest here, presented in the rest of Table 2 and in Fig-

ure 4, lead to a more powerful conclusion. These data are the minimum, mean and
maximum value of W (Yf ) over all primitive polynomials f ∈ Fm for m ≤ 25. They
were calculated from (5), using the online tables of Fm for m ≤ 25 provided by
Chabaud [1]. (While [1] does not guarantee that the listed polynomials are primi-
tive, the properties of the sequence they generate can be used to verify primitivity.)

Advances in Mathematics of Communications Volume 00, No. 0 (2007),
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Now from (1), we have

max
Y ∈Ym

M(Y ) = max
f∈Fm

max
0≤k<n

M(T k(Yf ))

= max
f∈Fm

W (Yf )(9)

by definition of W (Y ). Furthermore

mean
Y ∈Ym

M(Y ) = mean
f∈Fm

mean
0≤k<n

M(T k(Yf ))

≤ mean
f∈Fm

max
0≤k<n

M(T k(Yf ))

= mean
f∈Fm

W (Yf ),(10)

and similarly

min
Y ∈Ym

M(Y ) ≤ min
f∈Fm

W (Yf ).(11)

Each of (9), (10) and (11) can be verified for m ≤ 17 from Table 2.
Figure 5 shows that the minimum, mean and maximum value of W (Yf )/(

√
n ·

log log n) over f ∈ Fm are all (broadly) non-increasing as log n grows. This suggests
that W (Y ) grows like O(

√
n · log log n) for all m-sequences Y of length n, which by

(9) implies that

(12) the PSL of all m-sequences of length n grows like O(
√

n · log log n).

This strengthens the empirical conclusion of O(
√

n log n) growth reached in [5].
Figure 6 shows the variation with log n of the minimum, mean and maximum

value of W (Yf )/
√

n over f ∈ Fm for m ≤ 25. (The maximum value of M(Y )/
√

n
for m ≤ 17 shown in Figure 3 appears in scaled form as part of the graph of the
maximum value of W (Yf )/

√
n in Figure 6, in accordance with (9).) The most

striking feature of Figure 6 is that the graph of meanf∈Fm W (Yf )/
√

n levels out as
m reaches 13. In fact, for m ranging from 13 to 25 (the limit of our computations),
meanf∈Fm

W (Yf )/
√

n lies within less than 0.3% of 1.31. This suggests strongly
that the growth of meanf∈Fm

W (Yf ) is Θ(
√

n). Assuming this to be true, (10)
then implies that the growth of meanY ∈Ym

M(Y ) is O(
√

n). By Corollary 3, we
deduce empirically that

(13) the PSL of almost all m-sequences of length n grows like Θ(
√

n)

(in other words the proportion of m-sequences Y of length n for which M(Y )
grows like Θ(

√
n) approaches 1 as n →∞). This is the first numerical evidence of

Θ(
√

n) growth in the PSL of any family of binary sequences. There is some irony
involved in reaching the conclusion (13), since one of the principal aims of [5] was
to demonstrate the lack of theoretical or empirical support for similar claims dating
from the 1960s (see Section 3)! We emphasise, however, that currently there is no
proof of (13), and that the experimental results presented here were obtained only
by taking advantage of Theorem 7 and by using significant computational resources,
neither of which were available to the originators of these claims.

While the initial reason for studying W (Y ) was simply the computational con-
venience provided by Theorem 7, the apparent levelling out of the middle graph in
Figure 6 suggests that the quantity meanf∈Fm

W (Yf ), namely the mean over all

Advances in Mathematics of Communications Volume 00, No. 0 (2007),
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m-sequences of length 2m− 1 of the maximum of the PSL over all cyclic shifts, has
special significance and deserves further study.

It is natural to ask whether a similar result to Theorem 7 can be used to
obtain data on the PSL of very long binary sequences other than m-sequences.
But the proof of Theorem 7 depends on the shift-and-add property described in
Lemma 5, and the only binary sequences having this property are m-sequences
[3, Theorem 5.3], so this computational method does not appear to be directly
applicable to other families of binary sequences.

The proof of Theorem 4 involves estimation of the maximum absolute value
of an incomplete exponential sum (see Section 3), resulting in a growth rate of
O(
√

n · log n) for the PSL of m-sequences. Montgomery and Vaughan [9] showed,
subject to the Riemann Hypothesis for Dirichlet functions, that the absolute value
of another incomplete exponential sum is bounded by O(

√
n · log log n), suggesting

a possible proof method for the empirical conclusion (12). However the incomplete
exponential sum estimated in [9] is of a rather different type from that considered
in [11] (compare [13, equation (3.2)] with [13, equation (8.4)]), and in particular
does not correspond to a binary sequence having the shift-and-add property that is
a key element of the proof of Theorem 4. Consequently it is not clear to us whether
the similarity between (12) and the result of [9] carries any significance.

6. Conclusion

We have shown experimentally that:
1. the PSL of almost all binary sequences of length n appears to grow like

Θ(
√

n log n)
2. the PSL of all m-sequences of length n appears to grow like O(

√
n · log log n)

3. the PSL of almost all m-sequences of length n appears to grow like Θ(
√

n).
In particular, this answers empirically both of the questions posed in Section 1,

although none of these conclusions has yet been proved. The best proven results
on the growth rate of the PSL remain Theorem 1 for general binary sequences, and
Corollary 3 and Theorem 4 for m-sequences.
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Figure 1. Comparison of the growth rate of the PSL of randomly-
selected binary sequences Z of length n = 2m − 1 with the Moon
and Moser upper bound 2

√
n log n

lower value of m upper value of m # sequences
2 10.5 20000

11 12.5 10000
13 13.5 6000
14 14.5 5000
15 15.5 4000
16 16.5 3000
17 17.5 2000
18 18.5 1750
19 19.5 1500
20 20.5 1000
21 21.5 800
22 22.5 400
23 23.5 200
24 24.5 100

Table 1. Number of randomly-selected sequences of length 2m−1
contributing to Figure 1
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Figure 2. Running sum of two cyclic shifts of an m-sequence of
length 15, for 0 ≤ j < 30
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m min
Y ∈Ym

M(Y ) min
f∈Fm

W (Yf ) mean
Y ∈Ym

M(Y ) mean
f∈Fm

W (Yf ) max
Y ∈Ym

M(Y ) max
f∈Fm

W (Yf )

2 1 2 1.33 2.00 2 2
3 1 3 2.14 3.00 3 3
4 3 5 3.60 5.00 5 5
5 4 6 5.16 6.67 7 7
6 6 10 7.84 10.33 11 11
7 8 13 11.71 14.22 16 16
8 13 19 16.88 20.38 22 22
9 19 25 24.89 29.04 34 34

10 29 36 35.93 40.77 46 46
11 42 51 52.20 58.39 68 68
12 61 72 76.45 84.51 107 107
13 85 97 108.74 118.13 144 144
14 125 141 156.08 167.35 207 207
15 175 201 222.28 236.14 295 295
16 258 281 318.80 335.22 433 433
17 363 391 453.87 473.63 626 626
18 — 544 — 669.45 — 860
19 — 775 — 947.95 — 1262
20 — 1066 — 1340.99 — 1842
21 — 1501 — 1896.53 — 2619
22 — 2128 — 2681.38 — 3635
23 — 3010 — 3793.22 — 5326
24 — 4237 — 5362.74 — 7546
25 — 5905 — 7586.37 — 11291

Table 2. Calculated values of M(Y ) and W (Y ) for m-sequences
Y of length n = 2m − 1
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Figure 3. Comparison of the growth rate of M(Y ) with
√

n
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Figure 4. Minimum, mean and maximum values of W (Y )
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Figure 5. Comparison of the growth rate of W (Y ) with
√

n · log log n
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Figure 6. Comparison of the growth rate of W (Y ) with
√

n
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