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Abstract

DETEST offers a variety of options in testing methods for treating
inltial wvalue problems In ordinary differential equations. Results
ohtalned for some recently constructed explicit Runge-Kutta formula
pairs of orders 5 and 6 are reported. The results indlcate some
directions for gearching for methods that may improve, if only slightly,
on formula palrs in current use, It is particularly surprising that a
palr constructed using a design proposed by Butcher in 1974 is almost as

efficient as some of the most efficient palrs constructed recently.
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1. Introduction

For almost two decades it has been known that expllclt Runge-Kutta
formula pairs are efficient algorithms for obtalning accurate
approximations to non-gtlff inltial wvalue problems for ordinary
differential eguatlons. Even s¢, new kilndse of pairs and new palre of
known types have appeared recently in the literature. It 1s also
possible that other new formulas will be discovered.

From among thess, it iz desirable to select a particular palir for
implementation in a peneral purpose software package. To motivate this
selection, two types of criteria have been used. With each new palr,
test results on a set of selected problems might be compared wlth
corresponding tests on other pairs. In thls respect, the DETEST program
developed by HBall et al, [5] has become a standard. Alternatively,
a set of characteristic values pay be used to assess the quality of a
palr. Such a set of values has been preoposed by Prince and Dormand [6].

In this paper, only palrs of orderz 5 and 6 are consldered. Palrs
of these orders have been implemented in widely distributed software,
and some new pairs of different types are known. For nine pairs, both
the Prince and Dormand characteristic wvalues of and results from two
applications of DETEST using the same options and equalized amounts of
computatlen are reported. Such a comparison of the mest efflclent pairs
known of each type may be expected to identify those types with the
mast promise, Simllar comparisong for hlgher order pairs are alse
desirable. It is hoped that the comparlsons included here and those for
higher order palrs might assist in the development and selection of some

better palrs for use in standard software,

The most efflclent known pajrs of orders 5 and 6 can be dlvided in
twe clagses, For a pair of the first class, elght derivative
evaluations or stages are used to obtaln approximations of orders 5 and
€. For such an {8, 5:6) palr, elther approximation can be propagated.
In the second class, one approximation 1s cobtained using elght stages;
the second approximation uses the derivatlves of the first eight stages
together with the derivative evaluation of the first approximation.

Even though this type requires nine stapes per step, one stage may be




reused If the first approximation is propagated. We denote thesé pairs
as elther (9, 5(6)) or (9, (5)6) depending upon whether the order 5 or
order 6 approximation is the first computed. Further, an asterisk will
denote that the first approximation iz propagated from step to step.
For example, a (9‘.5(6)) palr will propagate a fifth-order approximation
with an average of eight stages per step, whereas a (9, 5{6)) pair will
propapate the sixth-order approximatlion using nine stapes in every step.

C; the nine palrs compared, four are (8, 5:6) pairs, ope is a
(%, 5(6}) palir, and four are (9..(5}6] pairs. Hence, esach except the
(9, 5(6)) palr wlll use about eight stages per step. As the (9, 5{6))
uses nine stages per step, it might be expected to be somevhat less
efficient than the other pairs; the results Iimdicate otherwise.
Coefficients of five pairs may easlly be obtained in the referenced
literature: those for the remalning palrs are displayed in Appendlx 2 in
the format of Butcher tableaus [1].

In the attempt to assess the most efficlent implementations of
these palrs, each is implemented using local eXtrapolationf that 1s,
the solution s propagated using the higher-order approximation.
Results from DETEST are reported for two modes, First, each pair is
tested wsing DETEST in XEPUS mode - that selected by Hall et al. [5] for
presentation of the code, More specifically, the error estimate s
absolute: le. 1t is the difference between the approximatlons of orders
6 and 5 of each component respectively, The norm of the error Iis
estimated as the magnitude of the largest component, and the Error Per
Unit Step ls compared to the user selected tolerance for acceptance of a
step and for computing the next trial steplength. New steplengths are
restricted to a 50 percent increase.

However, thls mode does not make the global error proportlonal to
the tolerance, a feature that 1s desirable if a user regulres a solution
for which a bound on the global error is specified. Shampine [7] and
Stetter [8] show that tolerance proportlonality of the global error 1s
preserved by elther EPUS or XEPS: Error Per Unit Step without local
extrapolation, or else Error Per Step with local eXtrapoclation. Since
practical experlence suggests that local extrapolation enhances
accuracy, the latter mode ls alsc tested. Te use DETEST with XEPS. a



number of changes to the code are required, The changes required are

specifled in Appendix 1.

In Section 2, each pair tested iz specifled. Section 3 tabulates
the Prince and Dormand characteristic values amnd the summary resulis
from DETEST. The final section makes some observatlons and suggests
direction for further study. Differences between the two modes of
DETEST used sre specified In Appendix 1. Coefficlents of four of the
tested palrs are tabulated in Appendix 2.

2. The methods

The first pair considered forms the basis of the DVERK code.
Coefficients of this pair have been tabulated recently by Enrlght et al.
(41, The second pajr s the algorithm PD6(5)8M for which the
coefficients are to be found in Prince and Dormand [6]. The third pair
is clogely related to PD6(S)8BM: Verner [9] showsd that each palr of the
type developed by Prince and Dormand could be used to construct a pair
of a more restricted class. Thus, from PD6(5)8M, a slightly different
pair may be obtalned using transformation formulas in [9]. This
corresponding pair 1s ¥6(5)84 and 1ts coefficlents are contained !n
Tableau 1. The fourth method, V6(5)842, ic another of the latter type.
Its coefficients are to be found in [9].

The second set of palrs studled are deslgnated as FSAL by Prince
and Dormand [6] teo Indicate that the First function evaluation of the
new step ls the Same As the Last of the previous step. The first pair
tested is based on a design by Butcher [1], and constructed using
techniques developed in [10]. For this palr, B5(6)9, the coefflclents
are displayed in Tableau 2. However, for palre of thls original deslgn
by Butcher, only the approximation of order 5 is available after eight
stages in a step. For the approxlmation of order &, nine stages are
required. Slnce we wich to compare results from local extrapolatlon,
the sixth-order approximation must be propagated, and as a result

derivative evaluations are required for all nine steges in each step.
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The final four methods are of a2 modified design. In these, the
first eight stages are used to obtaln the approximation of order 6, and
all nipe stages yield the approximation of order 5. Hence, for local
extrapolation, only elght derivative evaluatlons are reguired in each
step. Coefficients for the first of these pairs, D6{5)9F - proposed by
Dormand et. al. [3] for use in the estimatlon of global errors, are
contained in Tableau 3. V&{(5)%9a is enother pair of thls type designed
and displayed by Verner [10], Tableau 4 gives the coefficients of
¥6(5)9c whlech is simllar to the pair V6({5)9b appearlng in {10)]. The
final pair studied 1s that gelected by Calvo et al, [2] from a new
family they derived.

While there are differences between these palirs, each has been
selected at the time of construction to be optlmal In some sanse, In
particular, the values of A72 of Table 1 strengly Iinfluenced most of

these selections,

3, Comparlieon and testing of the methode

Table 1 records some characteristic valuse of the formula pairs
which might be used to predict their rellability and efficiency. Prince
and Dormand [6] propose that they be used as crlterla to select

particular methods from a family. These values are determlned using

A= | T | (1)
5. 17 (2)
| Tg |
e 1T -1, (3)
| Tg |
Rz  Mumber of principal error coefficlents equal to zero {4)

number of principal error coefficients

S6R = Lleft boundary of Interval of absclute stability
for the method of order &

(51

D = Magnitude of coefficient of largest modulus (6]



TasLE 1
Characteristic values of some methods

Pair A B. e R A, B c S D

72 72 72 z Teo Teo _Tm 6R 6w
Conventional methods
DVERK 2.07(~3) 2,75 1.48 0/20 1.93(-3) 2.61 1.40 -4.0 9.2 4.63(-4)
Parameters are (c2-1/6, c3=4/15. c5=5/6. c6=1/15. b?-O)

PD&(SIBM 2.33{(-4) 2.20 1.51 Os/20 g8.82(-5) 1.60 1.05 -3.9 4.5 1.03(-4)

=1/10, b_=3/50}

Parameters are (c2=1/10. c. =2/9, c5=3/5. c6~4/5. b, 8

3 7

V6(518M  2.33(-4) 1.47 1.50 020 8.82(-5) 1.01 1.05 -3.9 3.9 7.28(-4)}

Parameters are {c2-1/10. c.=2/9, c =3/5, ¢ =4/5, bT=D]

3 5 &

v&(5)BM2 2.45(-4) 1.64 1.6% 0s/20 7.27(-5} 1.54 1.54 -3.9 6.6 3.68(-4)

Parameters are (czﬁlfﬁ, cs-(io-szﬁ)/ls. c5-4/s. 06=9/10. b7=OJ

FSAL methods

B5(6)9 9.04(-5) 1.93 1.96 0/20 2.95(-5) 1.61 1.66 =-3.4 14,5 3.90(-4)

Parameters are (62'1/9. c.mi/6, ¢.=1/3, c =1/2, c=3/4, b_=1/16)

3 5 -] 7 9

D6(5)OF  4.37(-5) 1.7% 1.77 0O/20 2.92(-5) 1.88 1.88 -4.2 12.5 9.08(-5)

Parameters are (c2'1/9, c3-1/6. c5=5/9. c6=1/2. c?=48/49. b8-=1/2]

v6(S)9a  4.93{(-5) 1,44 1.32 0r20 1.87(-5) 1.35 1.37 -4.2 29.6 3.25(-4)

Parameters are (c,=1/8, c3-20-4¢T6]/45. cg=9/16, c =1/,

” c7=9/10. b7=0)

v6(5}9c 1.03(-4) 1.87 1.88 0/20 3.87(-5} 1.24 1.24 -4.2 3,0 3.06(-4)

Parameters are {c2-1/9, c3=1/6. c5=1/2. c, =3/5, c,=4/5, b7-0]

6 7

C6(5)9 6,00(~5) 2.10 2.12 0/20 3.83{-5) 1.87 1.83 ~-4.4 16.8 1.78(-4)
=35226607/35688279,

Parameters are [c3-1/5. ¢, =3/10, c5=14/25. cs=19/25. [

4
b8=-79074570/21055?59?. b9'1/201
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Each entry in Table 1 specifies the selectlon of arbitrary
parameters made for the pair selected from 1ts famlly. Each selectlion
was made to optlmize some corresponding characteristic walues, and in
most cases the emphasis was on minimizing “72 or a7” while ensuring
that norms of B, and C? are not larpe. Prince and Dormand [6]
Justify this emphasis. Alpgorithms for evaluation of the coefficients of
each pair from the arbitrary parameters may be found in the articles
referenced in Section 2.



Table 2 reports the results of applying DETEST in the XEPUS mode.

Fach test used tolerances 10 %

, k=3,..,9 , and only summary results are
reported. To contrast the results more sharply, additional tests were
made with an error estlmator scaled =c that the total number of function
evalvatlons was about the same for each pair tested. This was achlieved

by changlng values of the parameter b, for each pair, or more directly

T
by taking a multiple of the error estimate. Values of the appropriate
factors are stated in Tables 2 and 3. Then, the better palrs are

indicated by smaller maximum errors and fewer deceptions,

TABLE 2
Results using DETEST with XEPUS
Pair FCN No. of Maximum Fractlon Fraction

calls steps Error Deceived Bad Deceptions

Conventional methods

DVERK 148,091 17,107 22.6 0.084 0.005
123,248 14,006 100.5 0.312 0.047

(Error estimate divided by 3.0)
PD6(5)BM 124,475 14,176 4.3 0.017 0000
V6 (5)8M 172,833 20,261 0.8 0.000 0.000
—_— 124,486 14,194 4.0 0.019 0.000

{(Error estimate divided by 7.0)

Ve{5)8M2 155,488 17,973 2.4 0.063 0,000
126,308 14,322 8.3 0.020 0.000
{Error estimate divided by 3.5)
FSAL methods
B5({6)9 182,991 18,807 0.7 0.000 0.000
127,957 12,589 11.8 0.013 0.000
[Error estimate divided by 8.92)
D6(S)9F 125,895 14,078 22.9 0.053 0.005
V6(5)9a 151,231 17,188 2.6 C.007 0.000
123,935 13,727 9.1 0.055 0,001

(Error estimate divided by 3.5)

V6(5)9c 151,975 17,205 0.6 0.000 0.000

_ 123,911 132,700 3.3 0,003 0,000
{Error estimate divided by 3.5)

CE(5)9 146,103 16,609 1.3 0.000 0.000

- 124,047 13,783 12. 4 0.016 0.001

{Error estimate divided by 2.8)




The same tests were repeated for each palr using the mode YEPS.
Because thls mode maintalns the global error to be approximately
proportional to the requested tolerance, 1t is more desirable than XEPUS
for implementation, To use this mode, a number of changes to the DETEST
code are suggested by Hall et al [S5]1. The partleular changes made are
identified in Appendix 1. The results of these testis appear in Table 3.

TABLE 3
Results using DETEST with XEPS
Palir FCN No. of  Maximum Fraction Fractlon
calls steps Error Decelved Bad Decepticns

Conventional methods

DVERK 104,849 11,847 a5.2 0.095 D.006
115,096 13,141 14.9 0.034 0.000
{Error estimate multiplied by 2.0}
PD6(5)8M 90,076 9,582 4.1 0.024 0.000
115.878 13,286 1.0 0.000 0.000
[Error estimate multiplied by 7.0}
V&e(5)EM 116,118 13,302 1.0 0.000 0. 000
V6 (5)8M2 108,148 12,213 2.5 0.003 0.000
118,875 13,553 1.5 0.000 0.000

{Error estimate multiplied by 2.0)

FSAL methods

B5(&)9 124,865 12,353 1.4 0.000 0.000
113,904 11,176 1.5 0.000 0.000
(Error estlmate divided by 2.0)
D&{5)9F 90,071 9,762 31.4 0.078 0.007
115,543 12,986 4.1 0.003 0.000
(Errer estimate multiplled by 7.0)
V6(5)9a 103,575 11,511 2.8 0.022 0.000
113,335 12,742 1.2 0.000 0.000
(Error estimate multlplled by 2.0)
V6(5)9¢c 105,743 11,617 1.0 0.000 0.000
—_— 115,743 12,877 0.6 0,000 0. 000
[Error estimate multlplled by 2.0)
C6(519 103,191 11,322 1.5 0.001 0.000
115,871 12,976 1.4 0.000 0.000

(Error estimate multiplied by 2.5




’

4. Obgervations and cenclusions

Nine formula pairs of orders 5 mand 6 have been contrasted using
both the characteristic values suggested by Prince and Dormand as
measures of the guallty of & palr, and results from twe different
options from DETEST. The latter tests have been adapted so that for
each of the two optlons selected, egual amounts of computation were
required by esch palr for running the default problem set with the
selected tolerances,

The results of Tables 2 and 3 clearly lindicate that all of the
newer pairs lmprove on the results obtained using the DVERK algorithm.
It also appears that D6(5)9F is perhaps less robust than the remainling
patrs, Hore detalled reports for three of these pairs given by Calvo et
al [2] are consistent with the results in Table 3. Among the remalning
pairs, the differences are only marginal, and further study of other
properties of these palrs is warranted before selectlng a partlcular
palr for implementation.

Certainly the characteristic values of Table I should be consldered
in making ruch a selection. We immedlate]y cbgerve for DVERK that ATZ
and ﬁ?m are larger than the corresponding values for the other palrs.
However, there appears to be little correlatlon of these values for the
remaining; palrse with the corresponding performance of the pairs using
DETEST. In particular, the characteristic values of D&(5)9F could be
consldered to be as favourable as those of each of the other pairs, yet
it performed relatively poorly in both modes using DETEST. Thus, 1t is
perhaps reasonable to conclude that making A72 or A7w gmall while
maintaining norms of B7 and C7 are near to 1 will yleld good methods.
However, minimizing either of A or A even while ensuring B

72 T 7

or C7 are not large might pot provide optimal methods. Thile suggests
that from among the varlety of known palrs that are very efflclient, it

remains difficult te select one particular palir over any cther,

However, this study does indicate some directions for further work.

Far example, the DETEST results sugpest that nearly optimal palrs from

different classes can be constructed whleh exhlblt almost the same
levels of relliability and efficlency. Consider the pair B5(6)9.




Because nine stages are required for each step, the constraint
equalizing the amount of computation reduces the number of steps taken
by 12.5 percent over that for each other pair. This results in a
larger average stepsize, which might be expected to cause larger
errors. Further, the larger stepsizes would cause the higher order
terms in the error espansion to be more significant. Hence, we would
expect the error estimate to be less accurate for this palr than that
for each of the other pairs. Yet, the testing shows that the maximum
error and number of deceptions are not too much larger than
corresponding values for other pairs tested. This good performance of
B5(6)9 suggests that it might be frultful to construct and examine
other pairs which use more than the minimum number of stages per step.

It has been expected that the best choices from among those of the
newer FSAL type would be more efficient that the best of other types.
The tests above support this possibility, but the evidence 1s only
marginal at this stage - better pairs may remain to be found. Even so,
for the pair V6(5)9c, the coefficients are simple rational numbers which
are not large in magnitude, and its real interval of absolute stabllity
is nearly as large as the largest found among the tested pairs. As this
pair has exhibited the best results from DETEST, it is quite possible
that among the best pairs that exist, we may find some for which the
coefficients can be represented exactly. Such a property can be an
advantage for the development of software which is to be used in several
different computing environments.
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APPENDIX 1

The form of the DETEST code included 1n Hall et. al. [5] implements
a stepsize selection algorithm which is sultable for testling
eXtrapolation in an Error Per Unit Step (XEPUS) mode, To test
eX¥trapolation in the Error Per Step (XEPS) mede, the followlng changes
are required. First, there are three changes to METHOD:

(1) IF (EST .GT. 6.0D-1"*&"TOL)
HMAG = .QDU'(TOL/EST)"(I./B.)'DABS(H) {twice in celecting H)

(1i) EST = H*EST (after computing ESTI]

The maximum increase in steplength allowed was 350X%, These statements
would need modiflcation If a more liberal factor of 100% were selected.

There wers alcso thres changes to STATS:

(i} DATA PRECIS/0.DO/
{1i) CALL TRUE{N,XOLD,YTRUE,X,1.D=2"ERRTOL/{X=XOLD], ISKIF)
{11} 1n determining ERRTRU, do not divide by HUSED:
R = DABS(Y(I)-YTRUE(I])

The second change lmproves the accuracy of the TRUE sclution when large
stepslzes are used. {Dther altermatives for a more rellable
approwimation of the TRUE solutleon are posslble.} The third change ins
more ¢ritical in so far as it compares the Error Per Step with the error
ectimate, These changes, suggested by [5, p. 26), were sufficlent to
obtain the results reperted for testing in the XEPS mode, Some
alternatives were tried and found to yield the same results.

For each PAIR tested, a SUBROUTINE was written for use with
DETEST. In each case, the code for METHOD 1in [5] for the Fehlberg
formula palr of orders 5 and 6 was used as a model code.

Recent werslons of DETEST provide estimates of the asymptotic
formula for the global error and other statistics. Such tests were not
used in thls study.




APPENDIX 2
Butcher tableaus are used to display coefficlents of some formula

palre used in the tests descrlbed in thls article.

TaBLEAU 1
Coefficients of method V6(5])8M
0
1 1
10 10
2 -2 20
g 81 81
3 615 =270 1053
7 1372 343 1372
3 3243 -54 50949 4998
5 5500 55 71500 17875
4 -26492 72 2808 -24206 338
5 37125 55 23375 37125 459
787 -12369 61054 -770 385
k 540 N 57460 22815 459 507
. -2473 30 1575 -1372 15400 0 0
1404 13 884 351 5967
N 61 5 98415 16807 1375 1375 15 0
864 321776 146016 7344 5408 224
~5 7 6561 -2401 1375 13
8 716 ° 1737 5616 1836 0 ¢ 1m3
TABLEAU 2
o Coefficients of method BS(6)9
1 1
9 9
1 11
6 24 8
1 1 3
7 % % 16
1 2 1 4
3 7 O 5 77
1 13 12 -16 135
2 232 29 29 232
3 4083 | -25299 15567 -89505 195
3 14848 7424 1856 14848 128
205 -7279672392380 | 6781148987955  -3610900789495300
239 22614526690771 1040835956479 T248759793598481
2652649393744854 -1462673240280 3365424781824
248759793598481 779811265199 8577923917189
5 I 2809 5 -2208 1917 -1454 7808 610145215867
18450 2905 1175 2565 23175 2957892874650
£
& 2683 0 4096 -15147 716 5248 8577923917189 1
| 36900 8715 75200 2565 23175 94652571988800 16
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TABLEAU 3

Coefficients of method D&(5)9F
3 1
9 9
1 11
6 24 8
1 1, 3
Iy 16 i6
5 280 -325 1100
3 729 243 729
1 6127 -1077 6494 -9477
2 14680 734 3037 161480
48 |-13426273320 . 4192558704 14334750144 117092732328 -361966176
49 14809773769 = 2115681967 14 14809773769 40353607
. -2340689 31647 253549596 10559024082 -152952 -5764801
1901060 18369 ~ 977620105 12173 186010396
b8 203 0 30208 177147 -536 1977326743
2880 70785 164560 705 3619661760
-259
720
5 36567 0 9925984 85382667 -310378 262119736669
458800 27063465 117968950 808635 345979336560
-1 -101
) 2294
TABLEAU 4
Coefficlents of method V6(5)9c
0
1 3
9 9
1 1 1
6 24 B
1 1, 3
4 16 16
1 1 -3
2 a 9 3 1
3 134 . -333 476 98
5 625 625 625 625
4 -98 0 12 10736 -1936 22
5 1875 625 13125 1875 21
1 9 , 21 -292 74 -15 15
50 25 1925 25 o =
6 11 256 125 125 5
|l @ ° ° &3 O %01 528 72
~5 1 32 -2 125 -5 4
5 ® ° ° & 3 12 ° & 7
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