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Abstract 

DETEST offers a variety of options In testing methods for treating 

in l t ia l  value problems In ordinary differential tquatlons. Results 

abtalned for some recently constructed explicit Rungc-Kutta formula 

palrs oE orders 5 and 6 are reported. The rerulta indlcate some 

directions for searching for methods that may improve, I f  only slightly, 

on formula palrs In current use. I t  is particularly surprising that a 

palr constructed using a design p r g ~ $ e d  by Butcher in 1974 is almost as 

rfricient as some of the most efficient pairs constructed recently. 

Kcyuords: Expllclt Runge-Kutta formula pairs. D F E S T .  

Subject Classificatlonr: ME(WSI: 65105: CR: G. 1.7. 
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I. Introduction 

For almost two decades i t  has been known that expllclt Runge-Kutta 

formula pairs ere efficient algorithms for obtaining accurate 

approxlrnations to non-stiff lnltial value problems far ordinary 

differential equations. Even so, new klnd~ of pairs and new palrs o f  

k n m  types have appeared recently In the llt~rature. It Is also 

passlble that other new formulas will be discovered, 

Fron among these, it I s  deizirable to select a particular paIt for 

implementation In a general purpose software package. To motlvate thls 

selection, two types of criteria have beera used. With each nbg ppalr. 

test re~ults on a set of selected problems might be compared wlth 

corresponding tests on other pairs. In thls respect, the DETEST program 

developed by Hall e t  al. 151 has beeoms a standard. Alternatively, 

a set of characterlstlc values my be used to assess the quality of a 

pair.  Such a set of values has been proposed by Prlnce and Dormand 161. 

In thls pawt ,  only palrs ef orders 5 and 6 are considered. Pairs 

of these ordwr~ have keen implemented in widely distributed software, 

and some new pairs of- different types are known. For nine pairs, both 

t h e  Prince and Dormand characteristic values of  and results tram two 

appllcatlonr of DETEST using the s- optlam and equalized amounts of 

computation are reported. Such a compatlson of the most efflclent pairs 

known of each type nay be expected to identify those types with the 

most prornlse, Slmllar comparisons for higher order palrs art also 

desirable. It Is hoped that the comparisons included here and those for 

higher order palrs might assist in the development and selection of  sone 

better pairs for  use in standard software. 

The most efflclent known pairs of orders 5 and 6 can be dlvlded In 

two classes. For a pair of the first class, elght derivative 

evaluations or stages are used to obtain approximations of orders 5 and 

6. For such an (8 .  5:63 pals. either appraxlmation tan be propagated. 

In the second class, one approximation Is obtained using eight stages; 

the second approximation uses the derlvatlves of the rlrst eight stages 

together with t h e  derivative evaluation of the first approximation. 

Even though thls type requires nine stages per step, one stage may be 



reused if the first approxlrnstlon is ptopaaated. We denote thesk pairs 
* 

as elther 19, 5(63 1 or [ 9 ,  (5161 depcmilne upon whether the order 5 ar 

order 6 approxlrnation is the flrst computed. Further, an asterlsk w i l l  

denote that the first approximation is propagated from step to s t e p .  

For example, a (9 , 5 ( 6 ) )  pair wlll propagate a fifth-order approximatIan 

with an sverage of eight stages p r  step. whereas a (9,  5(6l) pair will 

propagate the slxth-order approxlmatlon using nlne stages In every step. 

CT the nlne pslrs coward, four are (8. 5:65  pairs. one IS a 

19. S ( 6 ) l  pair. and four are ( 9  ,15161 pairs. Hence, each except the 

19. S t 6 1 1  palr ulL1 uee about eight stages per step. As the (9, 5I613 

uses nine stages per step, it mlght be mpectcd to be somewhat less 

efriclent than the other pairs; the results indicate otherwise. 

Coefficients of five pairs may easlly be obtained In the referenced 

literature: those for the remalnlng pair= are displayed in Appendlx 2 in 

the format of Butcher tableaus 111. 

In the attempt to assess the most tfflclent lmplemcntstions af 

these pairs. each 1s implemented using local extrapolat ioy that 1s. 

the solution Is propagated using the higher-order approxlrnation. 

Results from D m  are reprted for Euo modes. Flrst, each pair is 

tested using DETESt in XEFW mode - that selected by Hall et al. [51 for 

presentation of the code. Hore specifically, the error estimate is 

absolute: le. It Is the difference between the approxirnatlons or orders 

6 and 5 of tach component respectively, The norm of the error 1s 

estimated as the magnitude of the largest component, nnd the Error Per 

Unit Step 15 compared to the user selected tolerance for  acceptance of a 

step and far computing the next trial steplength. New steplengths are  

restricted to a $0 percent Increase. 

Houever. this mods dome not make the global error proportlonal to 

the tolerance, a feature that Is desirable if a user requlrea a solution 

for which a bound on the global error is specified. Shampine I71 and 
Stetter I81 show that tolerance proportlonallty of the global error is 

pteserved by elther EWS or XSPS: Error Per Unit Step without local 

extrapolation, nr else Error Per Step wlth local extrapolation. Since 

practical experience suggests that local extrapolation enhances 

accuracy. the latter mode Is also tested. To use DETEST with XEPS. a 



number of changes to the code are requlred. The changes required are 

. specified in Appendix 1. 

In Stctian 2. each pa lr  tested 16 speclflud. Section 3 tabulates 

the Prince and Dormand charactcrkmtic values m d  the summary resul t s  

from D m .  The final sectlon makes some observirtlons and suggests 

direction for further study. DLfferences between the two modes of 

D m T  used ? r e  specif led In Appendlx 1. CoefIlcIents of four of the 

tested pairs are tabulated in Appendix 2. 

T k  first pair sons ldtrd forms the basis of the DVEXK cod?. 

Coefficients of t th ls  pair have been tabulated recently by h r l g h t  et al. 

141. The second pair 1s the algorithm PD6[5)8H for which the 

coefficients are to be round in Prince and Dormand t61. The third pair 

I s  closely related to  FT%CS)8M: Vernar [91 showed that each pair a f  the 

type dtvelopcd by Prince and Dormand could be umed to construct a palr 

o f  a more restricted class. Thus, from PD6(518M. a s l i ght ly  different 

palr may be obtained using transformation formulas In 191. Thls 

corresponding pair 1s V6(518H and its coefflclsnts are contained In 

Tableau E. The fourth method, Vb(518M2, Is another of the l a t t e r  type. 

Its coefficients arc to be found In f31. 

The second s e t  of palrs studled are designated as FSAL by Prince 

and Dormand I61 to lndieate that the First  function svaluatlon o f  the 

new step Is the Same As the  hst of the previous step. The first pair 

tested is based an a design by Butcher 111, and constructed using 

techniques developed i n  I t Q l .  For th i s  palr. B5(6)9, the coefficients 

are displayed In Tableau 2 .  However, for palre OF this oslglnal deslgn 

by Butcher. only the approximation of order 5 Is available after eight 

stages in a step. For the approximation of order 6, nine stages arc 

requlred. Slnce we wlsh to compare resulta from local txtrapolatlon, 

the sixth-order approximation must be propagated, and as a result 

derivative evaluations are required for a l l  nine stages In each step. 



The final four methods are of a modified design. In these, the 

first eight stages are used t o  obtain the approximation af order 6, and 

all nine stages yield the approximation of order 5. Hence. for local 

extrapolation. only elght derivative evaluations are requlred in each 

step. Coefficients for the flrst of these patrs. 561519F - proposed by 
Dormand tt. al. 131 for use in the astfmatlon of global errors. are 

contained in Tableau 3, V6(5)9a is another pair of th ls  type designed 

and displayed by Verner E Z C I J .  Tableau 4 gives the coefficients of 

V6(5)9c whlcb is similar to the pair V6[519b appearing fn f101. The 

f i n a l  pair studied is that selected by Calve et al. t21 from a new 

f ami ly  they derived. 

While there are differences between these pairs, each has been 

selected a t  the time of construction to be optlrnal in some sense. In 

particular, the values of 
%2 of Table 1 strongly lnflucnctd most of 

these selections. 

3. Compat-imon and teating of the methoda 

Table 1 records s o w  characteristic values of the formula pairs 

which mlght be used to predlct their rellabillty and efSlclency. Prince 

and brmand /61 propose that Lhty be w e d  as crlterla to select 

particular methods from a family. These values are determined using 

number of principal error coefficients equal to zero 
RZ = = I 4 1  

number of principal error caefficlents 

SGR = L e f t  boundary of lnterval of absolute stability 
151 

for the method of order 6 

D = Magnitude of coefficient of largest modulus ( 6 )  



TARE 1 
Characteristic values of some methods 

Conventional methods 

DVHU: 2.07(-3) 3.75 1-48  0/20 1.931-3) 4.61 1.40 -4.0 9 . 2  4.63[-4) 

Parameters are (c2=1/b. c 4 / 1 5 ,  c5=5/6, c6=1/15. b 7 4 )  3 

PD6(5)8M 2.331-4) 2.20 1.51 0/20 B.82(-51 1.60 1.05 -3.9 4.5  1.03(-4) 

Parameters are ( c ~ l / 1 0 ,  c =2/9, e =W5, c =4/5. b7=1/10. bS=3/SD) 3 5 6 

V6[5)8H 2.53(-43 1.47 1.50 0/20 8.&2(-5) 1.01 1.05 -3.9 3.9 7.2&1-4) 

Parameters are Ic =1/10. c3=2/9. c5-3/5, c6=4/5, b7==01 2 

V6l51BM2 2.45(-43 1.64 1.69 0/20 7.271-5) 1.54 1.54 -3.9 6.6 3.68f-41 

Parameters are [c  =1/6. c =(10-2Vm)/15, c5-4/5, c6=9/10, b7=01 2 3 

FShL methods 

Parameters are ( c  -1/9, c -1/6, c5m1/3, c =1/2, c =3/4, bg=l/16) 2 3 6 7 

W(S)9F 4.37(-51 1.74 1.W O / Z O  2.92(-53 1.88 1.88 -4.2 1 2 . 5  9.081-5) 

Parameters are [c  =1/9, c3=1/6. c =5/9 .  c6=1/2. c748/49.  be--1nl  2 5 

Y6[5J9a 4.93(-5) 1,44 1.32 0/20 l.B7[-51 1.35 1.R7 -4.2 29.6 3.251-4) 

Paralneters are l c2=1/8, c3=20-4m1/45, c5=9/16, c6=l/  ' . c7=9/10. b7=0) 

V6(5)9c 1.03(-41 1.87 1.88 0120 3.87[-5) 1.24 1.24 -4.2 3.0 3.061-41 
* 

Parameters are [c2=1/9, c3=1/6, c =1/2, c6=3/5, c7-Q/5, b7=01 
5 

C6I519 6.00f-5) 2.10 2.12 O n 0  3.83(-51 1.87 1.83 -4 .4  16.8 1.781-41 

Parameters arb Ir3=1/5, c4=3/10, c5=14/25, c6=19/25, c7=35226607/35688279. 

ba=-790~4570/ziosnss7. bg=l n o  I 

Each entry in Table 1 specifies the selectlon of arbltrary 

parameters made fo r  the pair selected from Its Tamlly. Each selectlon 

was made to optlmize some cottespondlng characteristic values. and In 

most cases the emphasls was on rnlnimltkng AT2 or htm vhlle ensurlng 

that norms of B7 and C7 are not large. Prince and Dormand 161 

Justify t h i s  emphasls. Algorithms for  evaluation of the coefficients of  

each pair from the  arbitrary parameters may be found i n  the artlrles 

rererenced in Section 2. 



Table 2 reports the results o f  applying D E E S I  in the XEPVS mode. 

Each test used tolerances k=3,.. ,9  , and onty summary results art . 
reported. To contrast the results more sharply. additional tests were 

made with an error estlmator scaled so that the total number of function 

evaluations w a s  a b u t  the same for each pair tested. Thts was achieved 
* 

by cbanglng values of the parameter b7 for each pair, or mwre dlrectly 

by taking a multiple of the error estlmate. Values of the appropriate 

factors are stated In Tables 2 and 3 .  Then, the better pairs are 

indicated by smaller rnaxlnum errors and fewer deceptions. 

TABLE 2 
Results using D!TEST w i t h  =PUS 

-. 

Pair FCN No. of Maxlmum Fsactlon Fraction 
calls steps Error Deceived Bad Deceptions 

Conventional methad8 

- 123,248 14,006 100.5 0.312 0.047 
(Error estlmate divided 'by 3.01 

PD61518M 124,475 14.176 4 . 3  0.017 0.000 

124.486 14,134 4 .0  0.019 0.000 
(Error estimate dlvlded by 7.01 

V6(5)8M2 155,488 17,973 2.4 0.003 0.000 

126,308 14,322 8.3 0.020 0.000 
(Error estimate dlvlded by 3.5) 

FShL methods 

B5/619 183,991 18,807 0.7 0.000 

127,957 12.589 11.8 0.013 
(Error estimate dlvlded by 8.92) 

V6(5)9a 151.231 17,188 2.6 0.007 

123.935 13,727 9.1 0 .055  
[Error estimate divided by 3.5) 

123,911 13.700 3.3 0.063 
(Error estimate divided by 3.51 

C6lSlS 146,103 16.609 1.3 5.000 

124.047 13.783 12.4 0.016 
(Error estlmate divided by 2 . 8 )  

- 



The same tests were repeated for each pair using the mode XEPS. 

Because thls mode maintains the global error to be approximately 

proportlonal to the requested tolerance. I t  is more desirabln than XEPOS 

for Implementation. Te use this mode. a number of changes t o  the D E T E T  

code are suggested by Hall et a1 151. The partleular changes made are 

identified in Appendix 1. The results ef these tests appsar in Table 3. 

TABLE 3 
Results using DETEST with XEgS 

P a i r  F[H No. of Maximum Fraction Fraction 
calls steps Error Dectlred Bad Deceptions 

C o n v t l I t i o ~ l  latthdls 

DVERK 104,849 11.847 35.2 0.095 0. 006 

- 115.096 13.141 14.9 0.034 0.000 
(Error estimate multiplied by 2.01 

PD6[518n 98,076 9,982 4.1 0.024 0 .000  

115.878 13.286 1.0 0.000 0.000 
[Error estimate multiplied by 7.01 

V6[51BH 116,118 13.302 1.0 0.006 0.060 

V6/518M2 108,148 12,213 2 . 5  0.003 0.500 

118,875 13,553 1.5 0.000 0.000 
(Error estlmate multiplied by 2.0) 

PSAL aethoda 

B5[619 124.865 12,393 1 . 4  

113,904 11,176 1 .5  
[Error estlmate divided by 2.01 

D6(5)9F 90,071 9,762 31.4 

115,543 12,986 4 . 1  
(Error estimate multlplled by 7.01 

V61519a 103,575 11.511 2 . 8  

113,335 12.742 1 . 2  
[Error estimate multlplled by 2.0) 

V6(5)9c 105,743 11,617 1.0 

115.743 12.&77 6.6 
lEsror estimate multlplltd by 2.0) 

C6 /5 )9  103,191 11,322 1.5  

115.871 12.976 1.4 
(Error estlmate multiplied by 2.5 



I 

4. Observstione and conelufsions 

Nine formula palrs of orders 5 and 6 have been contrasted uslng 

both the characteristic values suggested by Prince and hrmand as 

measures of the quality of a pair, and results from two dlflerent 

options from DETEST. The latter tests have been adapted so that for 

each of the two options selected, equal amounts of computation were 

required by each palr for t u m l n g  the default prcblern set with the 

selected tolerances. 

The results of Tables 2 and 3 clearly indicate that all of the 

never pairs improve on the results obtained uslng the DVERK algorithm. 

It also appears that D6f519F is perhaps less robust than the remaining 

paErs. Horc detalltd reports for three of these pairs given by Calvo zt 

aX L21 are consistent wLth the results In Table 3. Among the remaining 

pairs, the dlfferencas are only marginal, and further study o f  other 

properties or these patrs is warranted before selecting a particular 

pair for implementation. 

Certainly the characterlstlc values of Table f should h cunsldered 

In making nuch a selection. We dmraedlateLy observe for DVERP; that 5- 
and are larger than the corresponding values far the other palrs. 

However, there appears t o  be l i t t l e  correlallon of these values for the 

rernalnlny: pairs with the corresponding performance of the pairs using 

DETEST. In particular, the characterlstlc values of M(519F could bt 

consldeted to be as favourable as those of each of the other palrs. yet 

it performed relatively poorly in both modes uslng DEIEST. Thus, i t  is 

perhaps reasonable to conclude that making %2 or mal l  while 

maintaining norms of B1 and C7 are near to 1 wf ll ylcld good methods. 

However. minimi zlng either of or even while cneurlng 
87 

or C7 are not large might not provide optimal methods. T h l ~  suggests 

that from among the rarlety o f  known pairs that are very efficient, it 

remains difficult ta  select one particular palr over any other. 

However, th i s  study does Indieate Some dlsactlons for further work. 

For example, the D m T  results suggest that nearly optimal pairs from 

different classes can be constructed whleh exhlbit almost the same 

levels of reliability and efficiency. Consider the pair B5(6)9. 
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APPRmIX 1 

The form of the DETEST c d c  Included In B a l l  el. al. 151 lmplementr 

a slcpsite selection algorithm whlrh is suitable for testing 

extrapolation In an Error Per Unit Step (-1 mode. To test  

eXttapolatlon in the Error Per Step IXEPS) node. the folloulng changes 

are required First, there arc three charaes t o  M!?TWDD: 

[ i l  IF [EST .CT. 6.0D-1m*6'TC1L) 

WE = . ~ D O ~ ( - - T P + ~ ~ .  16. ) .D*85tR) (twice i n  selectln. 

I I i )  M = PEST [after computing EST1 

The maxlmum inereas* in mtepltngth allowed was 50X. These statements 

would need modltlcatlon l f  a more liberal factor of 1007. uere selected. 

There were also three changes t o  STATS: 

[ I )  DATA PECIS/O.W/ 

(iil C L L  TlhrE4N.XOLD,~UE,X,1.D-2m~TQV~X-XOLD~.l~KfB1 
( I I )  in determining ERRTRU. do no t  divide by HVSED: 

R = DAE3(Y(J3-YIRUEII3) 

The second change improves the aceuraey of the TRUE solution when large 

stepslzea arc used. (Other alternatives for a more rellable 

approxlmatlon of the TRUE solutlon are possible. The third change l a  

more cri t ical  in so far as it compares the Error Per Step ulth the error 

estimate. Tkse changes, suggested by IS. p. 261, were sufflclent t o  

obtaln the results reported for testing In the XEPS mode. some 

alternatives were tried and found to yield the same results. 

For each PAIR tested, a W I N E  was written for use with 

DETEST. In tach case, the code for METHOD In 151 for the Fehlberg 

formula pair of orders 5 and 6 was used as a model code. 

Recent verslwns of D m T  provide estimates of the asymptotic 

formula for the global error and other statiatlcs. Such tests were n e t  

used In thls study. 



Butcher tableaus are used to display coefficients of some formula - 
pairs  used i n  the  tests described in this article. 

TABLEAU 1 
Coefficients or method V6(518M 

TABLEAU 2 

I Coefficients of  method 851619 



TABLEAU 3 
Coefffclents of method D6[5)9F 




