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Abstract Sixty years ago Butcher [1] characterized a natural tabulation of
the order conditions for Runge–Kutta methods as an isomorphism from the set
of rooted trees having up to p nodes, and provided examples of explicit and im-
plicit methods of several orders. Within a few years. Fehlberg [6] derived pairs
of explicit methods of successive orders that could be implemented efficiently
by using the difference of each pair of estimates to control the local error.
Unfortunately, Fehlberg’s pairs were deficient for quadrature problems. Sub-
sequently, this author [10],[11] derived parametric families of explicit Runge–
Kutta pairs of increasing orders 6 to 9 that avoided this problem altogether.
These, and most known explicit methods, have been derived by exploiting cer-
tain ’simplifying conditions’ suggested by Butcher [1] that imposed constraints
on subsets of the coefficients, and thereby simplified the solution of the order
conditions for moderate to high order methods.

’Test 21’, a MAPLE program developed recently by Butcher [3], was ap-
plied to derive known 13-stage pairs of orders 7 and 8. Unexpectedly, results of
this application revealed the existence of some previously unknown methods -
ie. some that satisfied most, but not all, of the previously known simplifying
conditions. This present study develops formulas for directly computing coeffi-
cients of these together with others lying within this new parametric family of
(13,7-8) pairs. While the best of these new pairs falls short of the best of pairs
already known, the properties discovered might be utilized to precisely char-
acterize recently reported higher order methods found using other approaches
by Khashin [8] and Zhang[13], and possibly lead to finding other Runge–Kutta
and related yet unknown methods.
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1 Introduction

1.1 Initial value problems and their approximate solutions

For a system of ordinary differential equations, consider an autonomous initial
value problem (IVP) with a vector solution y(x) beginning at the point (x0, y0).
The solution is required in an interval [x0, X], and this problem is denoted by{

y′(x) = f
(
y(x)

)
, x ∈ [x0, X],

y(x0) = y0,
(1)

where y0 ∈ Rm, and the function f : Rm → Rm is assumed to be sufficiently
smooth. At each point of its domain of definition, the solution is assumed to
have a Taylor series solution, and the accuracy of a method is determined by
its order, the number of terms of the Taylor solution reflected by the approx-
imation. (Addition of a single differential equation, u′(x) = 1, u(x0) = x0,
reduces a non-autonomous system to one that has this form.)

Let N be a positive integer and define a stepsize h = (X − x0)/N , and
a uniform grid xn = x0 + nh, n = 0, 1, . . . , N . The accuracy of a method is
partly a function of its order of accuracy, and partly of the magnitudes of
the coefficients multiplying the local truncation error terms. Butcher [1] has
shown for a method to have order p for (1), the coefficients have to be chosen
to satisfy Np algebraic ‘order conditions’ in the coefficients of the method.
To approximate the solution y = y(x) ∈ Rm of the IVP(1) together with
estimates of the local error in each step, consider an s-stage explicit Runge–
Kutta pair of methods computed specified by

Y
[n]
i = yn + h

i−1∑
j=1

ai,jf(Y
[n]
j ), i = 1, 2 . . . , s,

yn+1 = yn + h

s∑
i=1

bif(Y
[n]
i ),

ŷn+1 = yn + h

s∑
i=1

b̂if(Y
[n]
i ), n = 0, 1, 2, . . . , N − 1.

(2)

Within each step of length h, the s values Y
[n]
i form low order approximations

to the solution at {x0 + h(n + ci), i = 1..s}, and coefficients {ai,j , bi, b̂i}
with ci = Σi−1

j=1ai,j are to be chosen specifically to obtain approximations
yn+1 of local order p and ŷn+1 of local order p − 1 at each endpoint, x0 +
nh. Parametric families of such methods have been derived by the author
[10],[11], with particular robust and efficient examples described more recently
in [12], and coefficients of these methods are displayed on the author’s website.
Derivations in those papers form basic tools for new pairs obtained here.
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With appropriate allowances for a system of differential equations, exam-
ples will be represented as Butcher tableaus in the form

c A

b

b̂

Table 1: A Butcher tableau for an error-estimating Runge–Kutta pair

1.2 Alternate Order Conditions

The standard formulation of conditions required to be satisfied for an s-stage
Runge–Kutta method to have order p were tabulated by Butcher [1] using
an isomorphic mapping from the set of rooted trees having up to p nodes
onto polynomial constraints on the coefficients {bi, ai,j , cj} of a method. For
each rooted tree of q nodes, 1 ≤ q ≤ p, the constraint is determined in two
parts: first, assign sequentially to the nodes of a tree t, indices i, j, k, ... so that
the root has index i, and the tree has q distinct indices. For the elementary
differential Φ(t), assign bi to the root; for each internal edge i-j occurring,
assign ai,j to node j, and to each terminal node l attached to node k, assign
ck. Now, Φ(t) is equal to the sum over all indices, of the products of the
coefficients assigned to all nodes. For example, for the 5-node tree t11, the first
three parts illustrates this partition to give Φ(t):

i

i
j

j j

Φ(t) =
∑
i,j

biciai,jc
2
j =

1

1 ∗ 1 ∗ 1 ∗ 3 ∗ 5 5

1
3

1 1

(3)

This constraint is completed by equating Φ(t) to the reciprocal of an integer-
valued function t! identified on this rooted tree. For this, assign the integer
1 to each terminal node of the tree; to each other node assign 1 plus the
total number of its descendent nodes. Then t! is the product of all integers
assigned to the tree. For the example above, t! = 1.1.1.3.5 = 15, and the full
constraint for t11 appears in equation (3). We now observe that the standard
order condition for a general tree t is

Φ(t) =
1

t!
. (4)

Below, for each tree we shall specify an alternate order condition to (4) as a
linear combination of Φ(t) for two different trees.

For the column vector, e = [1, ..,1]t, consisting of s ones, each order con-
dition can be represented using vectors {b, e}, a matrix A being strictly lower
triangular for explicit methods, and a diagonal matrix C for which Ce = c.
The left side of each Φ(t) is a product of b followed by products of powers
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of A and C selected according to the number of times and positions symbols
ai,j and cj occur in (4), followed by one copy of e either for each side branch
having at least two contiguous nodes or else for the final branch; the right side
remains unchanged. Hence, the order condition for t21 can be written as:

bCAC3e = 1/24.

The more general order condition may be written in the form

bACk1(ACl1e)..ACkm(AClme)ACk−1 = 1/t!, (5)

where t! is specified by the rule above for the right side of a standard order
condition. Factors ACli can be more general as indicated following (7) below.

Now, we specify a particular set of alternate equivalent order conditions.
That is, every method of s stages has order p if and only if its coefficients
satisfies both the standard order conditions tabulated by Butcher, and this
set of alternate order conditions. In fact, there are several ways to select a set
of ‘alternate order conditions’. The approach is to use a (backward) sequence
of sets of linear combinations of standard order conditions to eliminate the
rational fraction 1/t! from the right sides of each of the order conditions one
by one (excepting only the first order condition, namely Σibi = 1).

To specify these alternate order conditions for a method of order p, the
strategy for each value of p is to consider the standard conditions in Butcher
[2] [page 66] in reverse sequence. Start from tree number Np, and after some
alternate conditions have replaced standard order conditions, consider the next
standard order condition corresponding to a tree t. If t has at least one branch
leaving the root having at least two contiguous edges, the standard order
condition will contain a factor

∑
ai,jc

k−1
j with k maximal. Subtract from this

standard order condition for tree t, 1/k times the previous order condition for
t′ which differs only from that of t by having the stated factor replaced by the
factor cki . This yields the alternate order condition

Φ(t)− 1

k
Φ(t′) =

1

I1 ∗ I2 ∗ k
− 1

k

1

I1 ∗ I2
= 0,

(where I1,I2 include all factors in the second part t! in (5) not arising from
the factor

∑
ai,jc

k−1
j ), and this constraint is homogeneous in the coefficients.

Each of these alternate order conditions wlll now take the form

bACk1(ACl1e)..ACkm(AClme)q[k] = 0, (6)

where we define stage-order or ‘subquadrature’ expressions as

q[k] = (ACk−1 − Ck

k
)e, k = 1, .., p− 1. (7)

Formula (6) has different forms depending upon the type of tree it arises from.
Trees with at least two branches each having two or more contiguous nodes
will generate factors such as AClie or more general forms (eg. AAClie not
shown), and give order conditions of type D below. If there is exactly one
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single branch leaving the root having at most two contiguous nodes, this order
condition will be type C, and hence equation (6) will be bCk1q[k] = 0. A
form with three contiguous nodes would have the form bCk1ACk2q[k] = 0.
Otherwise, t will be a bushy tree of k − 1 nodes attached to the root. For
k > 1, the corresponding quadrature order condition Qk = bCk−1e − 1

k will
be replaced by the alternate order condition

kQk − (k− 1)Qk−1 = 0, (8)

which may be also be written in the form bCk−1(kC− (k− 1)I)e = 0.
Each of these alternate order conditions has the form βi ∗ αj = 0, 2 ≤

i+ j ≤ p where βi is a product of b with i− 1 copies of A and/or C, and αj

is a polynomial in A and/or C of terms up to degree j. Hence, the coefficients
of a method of order p must have βi orthogonal to αj , and as each is obtained
as a single weighted difference of two standard order conditions, we denote
these order conditions as Singly-Orthogonal Order Conditions (SOOC). We
will explore this relationship in more detail later. As a simple illustration, the
(scaled) difference of the standard order conditions for t7 and t5,

i
j

j j ∑
i,j

biai,jc
2
j =

1

1 ∗ 1 ∗ 3 ∗ 4 4
3

1 1

i

i i i 1

3
∗
∑
i

bic
3
i =

1

3
∗ 1

1 ∗ 1 ∗ 1 ∗ 4 4

1 1 1

yields the SOOC for t7 as b ∗ q[3] = 0.
This procedure changes each of Np − 1 standard order conditions to a

singly-orthogonal order condition (SOOC) by essentially adding a multiple of
a standard order condition lower in the sequence, and hence this process is
totally reversible. This establishes

Theorem 1 An s stage method is of order p if and only if its coefficients
(b, A,C) satisfy b ∗ e = 1, and the Np − 1 singly orthogonal order conditions.

Proof :
For a tree with at least one internal node, consider the partitioning t =

L(t)∗R(t) in which R(t) is a subtree obtained by pruning one branch from the
root of t. Suppose R(t) contains a penultimate node j with parent i (possibly
the root) having k − 1 terminal nodes as children. Now, let t̂ = L(t) ∗ R(t̂) be
an alternate tree for tree t in which R(t̂) has k nodes attached to node i to
replace edge i− j and the k− 1 terminal nodes of R(t). With this replacement
by R(t̂), it follows that in the integers giving t̂!, the value R(t)! = k ∗ R(t̂)!.

This same replacement also implies that t! = k ∗ t̂!. This in turn implies that,
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Φ(t) = 1/t! if and only if Φ(t̂) = 1/t̂!. Accordingly, for any particular tree t,
we could replace the standard order condition by the requirement that

Φ(t)− 1

t!
= Φ(t)− 1

k ∗ t̂!
= Φ(t)− 1

k
∗ Φ(t̂) = 0, (9)

because the standard order condition for t̂ lies within the remaining (lower
sequenced) order conditions. (Observe as above, that if R(t) has at most two
contiguous nodes, R(t̂) becomes a set of k nodes attached to the root of L(t),
and the result holds in the same way.) A similar argument shows that (6) and
(8) are necessary for a method to be of order p. Hence, along with the first
order condition, exchanging each standard order condition by the corresponding
alternate order condition retains a necessary set of conditions for the method
to have order p.

Standard order conditions establish that the singly-orthogonal order condi-
tions hold. On the other hand, if the singly-orthogonal order conditions hold,
the process described above can be reversed starting from the first order con-
dition and the lowest sequenced SOOC to establish that the standard order
conditions hold as well. ut

2 Types of order conditions

Order conditions may be partitioned according to the types of problems for
which they determine the accuracy of corresponding methods, and there are
four distinct types of order conditions.

To solve y′ = f(x), the weights and nodes must satisfy the quadrature con-
ditions, each of which corresponds to a (bushy) tree of k−1 nodes each directly
connected to the root. To solve linear constant coefficient non-homogeneous
problems y′ = Ky+f(x), order conditions corresponding to tall trees in which
each terminal node is connected to the single penultimate node, must be sat-
isfied. To solve variable coefficient linear problems, order conditions in which
each terminal node is connected to a single node of a tall tree must be satis-
fied. For all other problems, the order conditions required correspond to trees
that have at least two branches each containing two contiguous edges. Typical
examples of the four types of standard order conditions are:

A . Quadrature
∑
i

bic
4
i = 1/5 =

∫ 1

0

c4dc

B. Linear C.C. N.H.
∑
i,j,k

biai,jaj,kc
3
k = 1/120
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C. Linear V.C.
∑
i,j,k

bic
2
i ai,jcjaj,kc

2
k = 1/120

D. Non-Linear
∑
i,j,k

bi(ai,jcj)(ai,kc
2
k) = 1/36

Lemma 1 Suppose that the coefficients satisfy either bi = 0 or q
[j]
i = 0, 0 ≤

j ≤ (p− 1)/2, for each i=1..s. Then each order condition of type D collapses
to one of type C.

Proof : For any tree with two or more branches from an internal node or the
root each having at least two contiguous edges, assign one maximal branch to
be that for which conversion to the alternate form including q[k] occurs. Any
other branch may contain a factor ai,lc

j−1
l with j ≤ k. As this tree has no

more that p nodes and each branch excludes the root, it follows that the total
number of nodes in the two branches together satisfies j+ j ≤ j+k ≤ p−1, so
that j ≤ (p−1)/2. The constraints in the lemma now imply that either bi = 0,
or else a term Σlai,lc

j−1
l in the recessive branch can be replaced by cji/j. A

succession of these replacements reduces a type D condition to one of form (6)
in which all li have vanished, that is type C. ut

Now, we illustrate the singly-orthogonal forms for each of the four different
types of order conditions. These utilize vector-matrix forms and the stage-
order expressions :

A. Quadrature 5 - 4 b ∗ (5C 4 − 4C 3 )e = 0

B. Linear Constant Coefficient bA ∗ q [4 ] = 0

C. Linear Variable Coefficient bC2A ∗Cq [3 ] = bC2AC ∗ q [3 ] = 0

D. Non Linear b(ACe) ∗ q [3 ] = 0

The orthogonality within each singly-orthogonal order condition might be
determined in more than one way. Here, a separation of each SOOC into



8

vectors βi and αj is denoted by ‘∗′ to identify the orthogonality; for clarity,
this same partition is also indicated (temporarily) here by using boldface for
the first vector and italics for the second.

Type A B C D

Order p Np

(1) (1) = (1) Σbi = 1

2 1 = 1 Σbi(1− 2ci) = 0

3 1 1 = 2 .

4 1 2 1 = 4 .

5 1 3 4 1 = 9 .

6 1 4 11 4 = 20 .

7 1 5 26 16 = 48 .

8 1 6 57 51 = 115 .
−−− −− −− −− −− −−
Totals 8 21 99 72 = 200 −1

Table 2: The numbers of different types of Order Conditions

Table 2 illustrates how the numbers of the four types of order conditions
increase with increasing order. Only the first order condition Σibi = 1 does
not yield a SOOC, so there are Np − 1 singly-orthogonal order conditions to
solve. (Since bi appears linearly in each SOOC, vector b can be scaled so that
Σibi = 1 can be solved for b1.)

In contrast to form (3), the right side of each standard order condition can
be represented using multiple integrals. For example,

bCAC3AC2e =

∫ 1

c=0

c

∫ c

c̄=0

c̄3
∫ c̄

ĉ=0

ĉ2dĉdc̄dc. (10)

Observe that each occurrence of b or A in Φ(t) is replaced by a definite integral,
and each power of C is replaced by the same power of some c. This form is
often convenient when formulating the order conditions for direct solution.

3 Solving the order conditions

3.1 Methods for linear constant coefficient non-homogeneous problems

We have already seen that for constraints on bi and the stage-orders, conditions
D collapse to conditions C. We shall assume that sufficient conditions hold for
this to occur. We now show how to satisfy conditions A and B together for a
p-stage method of restricted order p. While such methods can be used to solve
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a problem of form y′ = Ky + f(x), the approach was used to derive classical
pairs ([10]), and will be used here as a skeleton to derive new methods.

Lemma 2 There exist p-stage methods of order p for linear constant coeffi-
cient non-homogeneous problems of form

y′ = Ky + f(x), y(x0) = y0,

where K is a constant matrix.

Proof :
(a) For p distinct nodes ci, there is a unique solution for b having p entries of

p∑
i=1

bic
j−1
i =

1

j
, j = 1, .., p. (11)

(b) More generally, for p distinct nodes ci, define for each k = 1, .., p,

Lp+2−k,i = (bAk−1)i, i = 1, .., p− k + 1. (12)

Then, for each k = 1, .., p, unique values Lp+2−k,i, i = 1, .., p + 1 − k can be
chosen to satisfy

p+1−k∑
i=1

Lp+2−k,ic
j−1
i =

(j − 1)!

(j + k − 1)!
, j = 1, .., p− k. (13)

Now form a strictly lower triangular array L with Lp+2−k,i, i = 1, .., p+1−k,
making up the elements of row p+2−k, k = p+1, .., 2, and row p+1 containing
Lp+1,i = bi, i = 1, .., p. With Lp+2−k as defined by (12), it now follows that
coefficients ai,j can be computed sequentially up back diagonals of L starting
from the right-most diagonal using

aq,q−k =
(
Lq,q−k −

q−1∑
j=q−k+1

Lq+1,jaj,q−k
)
/Lq+1,q, q = p+ 1, p, .., k + 1,

for each k = 1, .., p − 1. This gives the weights bi = ap+1,i, i = 1, .., p, and
the coefficients ai,j , 1 ≤ j < i ≤ s of a p-stage explicit Runge–Kutta method
that satisfies all of conditions A and B to order p for this restricted class of
problems. ut

Table 3 following provides coefficients of an 8-stage method of order 8
for linear constant coefficient non-homogeneous initial value problems. While
order p=8 can be illustrated with simple examples, there is no choice of the
arbitrary nodes that will lead to an embedded method of order 7 using the
six leading stages of the (8,8) method and only one additional stage. Possibly
other approaches to error estimation could be developed for such methods.
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0
3
4

3
4

1
4

5
24

1
24

1
2

23
12

7
12 −2

3
8

429
320

51
128 −

441
320

9
640

7
8 −

10955
1728 − 8743

3456
735
64

441
128 −

140
27

1
8 −

67303
48384 −

5525
13824

485
256

171
512 −

305
864

9
224

1 426836
34587

36755
4941 −

5960
183 −

5738
549

102080
4941

1216
3843

1792
549

61
1470

16
105

16
105

286
945 0 1024

6615
1024
6615

61
1470

Table 3: An eight-stage method of order 8 for linear constant coefficient
non-homogeneous problems

3.2 Explicit (12,8) Runge–Kutta methods for general initial value problems

The motivating theme of this study is to determine the structure of a new
family of (13,7-8) pairs of explicit Runge–Kutta methods. Initially, we derive
the main 12-stage method of order 8 for such problems. For this, the L-tableau
of Lemma 2 has nine rows, and we split it in two ways. First, we insert four
new unspecified rows after the first row, and then we insert four columns after
the first column. New column values for elements Li,j , are inserted so that

Li,j = 0, i = 9, .., 13, j = 2..5. (14)

This expanded L-tableau will have the same values in rows 10 to 13 with
columns 2 to 8 moved four columns to the right. Values of ai,j for rows 2 to
9 of matrix A of a method will be computed in advance to make stage-order
values equal to zero, and as well so that the remaining order conditions of type
C will be satisfied. After computing these values for rows 2 to 9 of A, values
of Li,j in rows 10 to 13 will be used to compute corresponding values of ai,j
in these rows using back substitution.

4 Nullspaces

4.1 Mutually orthogonal matrix representations

We now extend the concepts of βi and αj to be matrices of row and column
spaces respectively. For βi, there is a very easy extension.

Definition 1 For each i, we define βi to be a matrix of s columns whose rows
are left parts of SOOCs having products up to i factors.
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For example, βi may contain b and other rows as appropriate. One possible
choice for β4 is,

β̂4 =



b

bC

bCC

bCCC

bAA

bAAA


,

but this matrix could contain more rows such as bACA or bCAC, or from
conditions D, (bC) ∗ (ACe) (where * denotes elementwise multiplication). It
will be convenient to let β̄i denote a maximum number of different rows each
product of which contains up to i factors.

Inconveniently, an extension to αj , is more restrictive.

Definition 2 For each j and βj , we define αj to be a matrix of s rows whose
columns are right parts of SOOCs of sums of products of up to j factors,
such that each column of αj is orthogonal to all rows of βj , and we use ᾱj to
designate a maximum number of different columns.

It turns out that each αj will contain right parts of SOOC conditions B,
C and D, but the only right parts arising from conditions A will be one based
on a Jacobi polynomial of degree j (orthogonal to all polynomials of lower
degree). Hence, matrix αj will not contain e = [1, ...,1]t, but α1 could contain
(I−2C)e, and α2 could contain (I−6C+6C2)e and/or q[2]. Another example
of α2 arises from equations (15) below. An example of α3 is

ᾱ3 = [q[2],Cq[2],Aq[2],q[3], (I− 12C + 30C2 − 20C3)e].

We observe now that any two matrices βi and αj are pairwise orthogonal
whenever 1 < i ≤ j and i+ j ≤ p. Hence, each row of βi is a left nullvector of
αj , and each column of αj is a right nullvector of βi.

4.2 The Nullspace Theorem

From these definitions, we have the following:

Theorem 2 For an s-stage method of order p for (1), it is necessary for each
i ≤ j that

βi.αj = 0, 2 < i+ j ≤ p. ut
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To derive methods, we might try to characterize coefficients of a method that
possess such orthogonality properties. To this end, orthogonality properties of
some new methods found using Test21 have been studied. For these methods,
it turns out that there is a surprising two-parameter partitioning of matrix A
that will be displayed later.

To illustrate how this result is useful, consider the four order conditions
for three-stage methods of general order three:

1. Q̃[1] = Σ3
i=1bi − 1 = 0

2. Q̃[1] − 2Q̃[2] = Σ3
i=1bi(1− 2ci) = 0

3. 2Q̃[2] − 3Q̃[3] = [b2 b3 ]

[
c2(2− 3c2)

c3(2− 3c3)

]
= 0

4. b.q[2] = 0

(15)

Four solutions with b3 6= 0 exist (see Butcher, [2], p. 63). We can choose

β1 =
[
b1 b2 b3

]
and α2 =


1 0 0

1− 2c2 c2(2− 3c2) q
[2]
2

1− 3c3 c3(2− 3c3) q
[2]
3

;

these are orthogonal and b 6= 0, so that α2 must have rank 2. Hence, α2

contains a row or column of zeros, or else has linearly dependent rows, but
not all occurrences lead to methods. The four solutions that Butcher reports
arise from the last two columns being proportional, the last two entries of row
three being zero, and two occurrences of the second column being zero.

5 Twelve stage methods of general order eight

In [10] and [11], the author derived a parametric family of (13,7-8) Runge–
Kutta pairs. That is, for a twelve stage method of order eight, the first ten
stages plus one additional thirteenth stage were used to obtain a second, dif-
ferent method of order seven [10]: the solution of an IVP could be propagated
by either method, and the difference of two approximations at each step would
provide an estimate of the local truncation error that could be utilized to con-
trol the stepsize to minimize local errors. In deriving these pairs, the main
focus was on the (12,8) method, and that focus continues here. Assume the
nodes are constrained as in Theorem 3(1.) below to satisfy some stage-order
conditions, and one order condition of type C when three other conditions
hold.

With these nodal constraints, coefficients of each (12,8) method of a pair
found in [10] were computed using the following algorithm:
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– Stage 2: q
[1]
2 = 0 =⇒ a2,1 = c2. SO=1

– Stage 3: q
[1]
3 = q

[2]
3 = 0. SO=2

– Stage 4: a4,2 = 0, q
[k]
4 = 0, k = 1, 2, 3. SO=3

– Stage 5: a5,2 = 0, q
[k]
5 = 0, k = 1, 2, 3. SO=3

– Stage 6: a6,2 = a6,3 = 0, q
[k]
6 = 0, k = 1, 2, 3, 4. SO=4

– Stage 7: a7,2 = a7,3 = 0, q
[k]
7 = 0, k = 1, 2, 3, 4. SO=4

– Stage 8: a8,2 = a8,3 = 0, a8,4 arb., q
[k]
8 = 0, k = 1, 2, 3, 4. SO=4

– Stage 9: a9,2 = a9,3 := 0, q
[k]
9 = 0, k = 1, 2, 3, 4, SO=4

L13,10(c10 − c12)(c10 − c11)Σ9
j=k+1 L11,jaj,k

-Σ9
j=k+1L13,j(cj − c12)(cj − c11)aj,k L11,10 = 0, k = 4, 5.

– Weights bi = L13,i, i = 1..12. SO=8

– Stages 12, 11, 10: Use back-substitution on L14−k,i, SO=4
i=14-k,..,1, k=2,..,4, to get a14−k,i, i = 13− k, .., 1, k = 2, .., 4.

The stage orders (SO) are emphasized for each stage. For the new methods,
this anticipates a reduction of stage-orders from SO=4 to SO=3 in stages 7
to 12. This reduction is to be replaced by orthogonality conditions on the
corresponding stages, but even more is needed.

Even with this reduction in the stage-orders, there remain a number of
identities among components of α4. Because ai,2 = 0, i > 3, ai,3 = 0, i > 5
and the stage-orders, for ê = [0, 0, 0, 0, 0, 1, .., 1]T , the following vectors are
equal:

ACCCê = ACACê/2 = AACCê/3 = AAACê/6 =

ACCAê = ACAAê/2 = AACAê/3 = AAAAê/6

For ē = [0, 0, 0, , 1, .., 1]T , we find in addition that

CCCCē = CCACē/2 = CACCē/3 = CAACē/6 =

CCCAē = CCAAē/2 = CACCē/3 = CAAAē/6

These identities can be utilized in showing βi ∗ αj = 0 after showing the
orthogonality for one αj from either set of identities. We refer to the use of
lower-orders and these as proofs using stage orders.

For each new method of order eight, it is assumed that bi = 0 or q[k] =
0, k = 1, 2, 3 implying that Lemma 1 is valid so that all conditions D collapse
to conditions of type C. Otherwise, in contrast to assuming q[4] = 0, it will be
assumed that q[4] lies in the nullspace of β̄4. A second non-trivial nullvector of
β̄4 is the Jacobi polynomial J4(C)e of degree 4 on [0,1] that is orthogonal to
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all polynomials of lower degree. In particular, observe using order conditions
of type A with (10) that

s∑
i=1

bic
j
iJ4(ci) =

∫ 1

c=0

cjJ4(c)dc = 0, 0 ≤ j ≤ 3.

As well, order conditions of type B imply that bAjJ4(C)e = 0, j = 2, 3,
by direct computation, with (12), (13) and (16) so that J4(C)e lies in the

nullspace of β̂4. For J4(C)e to lie in the nullspace of β̄4, we shall show later

that the rowspace of β̄4 usually lies in the span of the rows of β̂4.

For several examples of these new methods found using Test21, some prop-
erties were determined computationally. These properties guide the statement
and proofs for Theorem 3.

– β̄4 has 15 rows: {b,bC,bC2,bC3,bA,bA2,bA3,bAC,bCA,bCA2,
bACA,bC2A,bA2C,bCAC,bAC2} for order conditions of type C

– β̄4 has 5 rows: {b ∗ (ACe),b ∗ (AACe),b ∗ (AC2e),bA ∗ (ACe),bC ∗
(ACe)} for order conditions of type D (Recall that * denotes elementwise
multiplication.)

– Columns {2,3,4,5} of β̄4 are columns of zeros, and this matrix has rank = 6.

– J4(C) = (I− 20C + 90C2 − 140C3 + 70C4)e and q[4] are distinct non-

trivial null-vectors of β̂4. Hence, its nullspace and that of β̄4 is spanned by
{ei, i = 2..5, J4(C), q[4]}.

– The six rows of β̂4 are linearly independent, and so they span the rowspace
of β̄4. Hence, the remaining rows are linearly dependent on these.

– When c6 = 1/2, rank (rows 7 to 12 of β̄4)=5.

– Rank of ᾱ4=5.(This rank might be expected to be six.)

– Non-trivial columns of α4 are J4(C) and q[4].

Theorem 3 For a 12-stage method :

1. Choose 12 nodes with c1, .., c12 distinct confined by c3 = 2c4/3, c5 =
c6(4c4 − 3c6)/(6c4 − 4c6), and for π(c) = c(c − c6)(c − c7)(c − c8), c9 is
chosen so that[ ∫ 1

0

π(c)
(c− 1)2

2!
dc
][ ∫ 1

0

π(c)(c− c9)
(c− 1)2

2!
dc
]

=
[ ∫ 1

0

π(c)
(c− 1)3

3!
dc
][ ∫ 1

0

π(c)(c− c9)
(c− 1)

1!
dc
]
.

2. Choose a[i,2] = 0, i = 4..12, a[i,3] = 0, i = 6..12, bi = 0, i = 2..5.

3. Constrain q
[1]
2 = 0, q

[1]
3 = q

[2]
3 = 0, q

[k]
i = 0, i > 3, k = 1, 2, 3, and q

[4]
6 = 0.

4. Constrain stage 9 so that Σibic
2
i ai,j = 0, j = 4, 5.
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5. Choose Li,j by (13) with Li,j = 0, j = 2..5 (14), and use back-substitution
to compute the weights bi and coefficients of stages 12,11 and 10.

6. Choose remaining parameters so β̄4 is orthogonal to q[4].

Then, for most choices of the arbitrary nodes, the method has order 8.

Proof The first two nodal constraints of item 1. are needed to allow the several
stage-order conditions of items 2. and 3. to be satisfied. The constraint on c9
and item 4. are used to satisfy bC2AC4 = 1/40 as shown in [10]. Conditions
A and B follow from bi = 0, i = 2, .., 5, constraints on q[k] in item 3., and

values of Li,j = 0. Also, values for bi, i = 2, .., 5, and values of q
[k]
i assumed

to be zero force conditions D to collapse to conditions C . As well, the same
values with item 4. imply that columns 2 to 5 of β̂4 are all zero.

Next, the rows of β̂4 are usually linearly independent. For distinct nodes,
linear independence of {b, bC, bCC, bCCC} follows from a van der Monde
matrix determined by those values of bi that are non-zero. Assume bAA is a
linear combination of the previous four rows. Hence, for bAA = K1 ∗ b+K2 ∗
bC + K3 ∗ bCC + K4 ∗ bCCC, post-multiplication by Ck, k = 0, .., 4, with
conditions A and B lead to a system of five equations:

1/(k + 1)(k + 2)(k + 3) = K1/(k + 1) +K2/(k + 1)(k + 2)

+K3/(k + 1)(k + 2)(k + 3) +K4/(k + 1)(k + 2)(k + 3)(k + 4), k = 0, .., 4.

The unique solution of this system leads to bAA = b(I − C)2/2. However,
bAA11 = 0, while b11(1− c11)2 6= 0 usually, leading to a contradiction. Hence,
bAA is usually linearly independent of {b, bC, bCC, bCCC}. A similar
argument with bAAA10 = bAAA11 = 0 shows that bAAA is usually lin-
early independent of the four rows and bAA. For this, post-multiplication by
Cke, k = 0, .., 4 of a linear combination for bAAA and stage 11 leads to

bAAA =
c11(b(I − C2)− 2bAA)

6
− bC(I − C)2

6
+
bAA

3
.

Now, values for stage 10, and integral forms of Lagrange polynomials for b10

and bAA10 with π(c) = c(c− c6)(c− c7)(c− c8)(c− c9) require that∫ 1

0

π(c)(c− 1)
{

(c− 1)((c11 − 1) + (c10 − 1)− (c11 − 1)(c10 − 1)
}
dc = 0.

This requires the linear polynomial in braces to be orthogonal to π(c)(c − 1),
and for each viable choice of all nodes except c10, this occurs for only a finite

number of values of c10. Hence, this establishes that the rowspace of β̂4 is
usually a linearly independent set of six rows.

To establish conditions C hold, formulas among A,C, b are used, and these
are considered separately. Because of values in columns 2 to 5 of β̂4 are all
zero, and otherwise stage-orders are at least three, only order conditions with
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leading parts in β̂4 need to be considered. Formulas (12) and (13) for Li,j for
i = 12, 13, imply that

bA = b(I−C). (16)

Now, substitution of bA or bC from (16) shows that each of bA, bCA, bAC,

bCAA, bACC lies in the rowspace of β̂4. Post-multiplication of (16) by AC
shows that the sum bAAC+bCAC=bAC lies in this rowspace; hence both or
neither of bAAC and bCAC lie in this rowspace. Similarly, both or neither

of bACA and bCCA lie in this rowspace. Since the nullspace of β̂4 contains
six linearly independent vectors {ei, i = 2..5, J4(C), q[4]}, and has twelve
nonzero columns, it has rank at most six, and usually contains six linearly

independent rows of β̂4. Hence, we might expect that the four vectors bAAC,
bCAC, bACA and bCCA will also lie in this rowspace. We now show that each

of these is usually a linear combination of the rows of β̂4. Assume

bACA = K1∗ b+K2∗ bC+K3∗ bCC+K4∗ bAA+K5∗ bCCC+K6∗ bAAA.

On post-multiplication by Ck, k = 0, .., 4, and solving using the order condi-
tions A and B, the solution

bACA =
b(I − C)2(I + 2C)

6
+K4

(
bAA−b(I − C)2

2

)
+K6

(
bAAA−b(I − C)3

6

)
for each K4 and K6 is found. Next, for

xx = b10(1− c10)2, yy = 2bAA10(1− c11),

values at nodes c11 and c10 lead to

K4 =
(c11 − c10)xx+ c11yy

(c11 − c10)xx+ yy
,

K6 =
2(c10 − c11)xx+ yy

(c11 − c10)xx+ yy
.

As bCCA = bCA− bACA = b− bC− bAA− bACA, we obtain on substitution
the representation

bCCA =
b(I − C)(5I − C + 2C2)

6
− bAA−K4

(
bAA− b(I − C)2

2

)
−K6

(
bAAA− b(I − C)3

6

)
,

with the same constants, K4 and K6.
The same approach also yields the slightly different formula for

bAAC =
bC(I − C)2

2
+K4

(
bAA− b(I − C)2

2

)
+K6

(
bAAA− b(I − C)3

6

)
,

with different constants, K4 and K6. For this, stages 11 and 10 imply that

K4 :=
(c11 − c10)xx+ c10yy

(c11 − c10)xx+ yy



17

K6 :=
3(c10 − c11)((1− c11)xx− yy)

(1− c11)((c11 − c10)xx+ yy)
.

As bCAC = bAC − bAAC = bC − bCC − bAAC4, substitution leads to

bCAC =
bC(I − C2)

2
−K4

(
bAA− b(I − C)2

2

)
−K6

(
bAAA− b(I − C)3

6

)
,

with the same (second) set of constants, K4 and K6. If the arbitrary nodes
are selected so that the denominators of each pair of K4 and K6 are nonzero,
we find that each of bAAC, bCAC, bACA and bCCA lie in the rowspace of

β̂4. As well, since conditions of type D collapse to conditions of type C, it
follows that each of b*ACe=bCC/2, bC*ACe=bCCC/2, bA*ACe=bACC/2,
b*ACCe=bCCC/3, b*AACe=bCCC/6, are rows of degree 4 that lie in the

rowspace of β̂4. Hence, the rowspace of β̄4 is usually spanned by the rows of

β̂4.

Now, the orthogonality of β̂4 to α̂4, and otherwise stage-order conditions
to order 3 imply that all of conditions C hold, and hence the method has order
eight. ut

6 Algorithm for new methods

In contrast to the algorithm for classical (12,8) methods above, we begin an
algorithm for computing coefficients of nullspace (12,8) methods. Initially, we
need to compute those multiples of a76, an arbitrary value, that occur in
each non-zero entry in column six of matrix A. These values are designated
as C1i, i = 7, .., 12 with C17 = 1, and form the non-zero entries of a right

nullvector of the rows of β̂4. More detail of this computation appears later in
Theorem 4. To begin the algorithm, impose the same nodal constraints given
for Theorem 3; these are the same for a (12,8) method of a pair found in [10]:

– Stage 2: q
[1]
2 = 0 =⇒ a2,1 = c2. SO=1

– Stage 3: q
[1]
3 = q

[2]
3 = 0. SO=2

– Stage 4: a4,2 = 0, q
[k]
4 = 0, k = 1, 2, 3. SO=3

– Stage 5: a5,2 = 0, q
[k]
5 = 0, k = 1, 2, 3. SO=3

– Stage 6: a6,2 = a6,3 = 0, q
[k]
6 = 0, k = 1, 2, 3, 4. SO=4

– Stage 7: a7,2 = a7,3 = 0, a7,6 = a76, q
[k]
7 = 0, k = 1, 2, 3. SO=3

– Stage 8: a8,2 = a8,3 = 0, a8,7 = a87, q
[k]
8 = 0, k = 1, 2, 3, SO=3

q
[4]
8 = C18q

[4]
7
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– Stage 9: a9,2 = a9,3 := 0, q
[k]
9 = 0, k = 1, 2, 3, SO=3

q
[4]
9 = C19q

[4]
7 ,

L13,10(c10 − c12)(c10 − c11)Σ9
j=k+1 L11,jaj,k

-Σ9
j=k+1L13,j(cj − c12)(cj − c11)aj,k L11,10 = 0, k = 4, 5.

– Weights bi = L13,i, i = 1..12. SO=8

– Stages 12, 11, 10: Use back-substitution on L14−k,i, SO=3
i=14-k,..,1, k=2,..,4, to get a14−k,i, i = 13− k, .., 1, k = 2, .., 4.

The intricacies of this algorithm warrant some additional comment. Definitions
of bAAA, bAA, bA from those of Li,j , i = 13, .., 10 imply that bA(k−1)q[4] =

0, k = 1, .., 3. The choice of C1 as a nullvector of β̂4 implies that bA(k−1)C1 =
0, k = 1, .., 3.. Now, consider

Σ12
i=7bA

(k−1)
i

{
C1i −

q
[4]
i

q
[4]
7

}
= 0, k = 1, .., 3.

We have already forced the expression in braces to be zero for each of i = 7, 8, 9.
It follows from most if not all values of {bAA, bA, b} that the matrix must
imply all values in braces are zero, and hence q[4] as a multiple of C1 is a

nullvector of β̂4. As a postnote, we remark that in computing examples of
these new nullspace methods, each vector of components of a76 in columns
1,4,5,6 of rows 7 to 12, is a multiple of the corresponding subvector of q[4]

formed by rows 7 to 12.
In summary, stage orders of stages 7 to 12 are reduced to SO=3, but stage

6 retains SO=4. In place of stage order 4, C1 has been designed as a nonzero

nullvector of β̂4, and then forced to be a multiple of q[4]. As stated previously
after the first algorithm in Section 5, even more is needed.

7 Structure of new methods

Theorem 3 does not quite define an algorithm for the new methods of order
eight. When Test21 was applied using consistent sets of nodes some problems
occurred.

1. Test21 only gave methods when c6 = 1
2 .

2. Even for this choice of c6, only a few sets of nodes allowed the Test21 al-
gorithm in MAPLE to compute coefficients of a new method.

3. More detail on making q[4] orthogonal to β̄4 is needed.

These problems motivated an attempt to find an algorithm to directly compute
exact coefficients for each method of this new family.

Theorem 4 Assume {b, A, c}, form coefficients of a traditional twelve-stage
method of order eight. Assume that the last six columns of β̄4 is a 20×6 matrix
with rank 5. Define two column and two row vectors by
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– C1i = 0, i = 1..6, C17 = 1, and otherwise, C1 is a nonzero solution of
β̄4.C1 = 0.

– R1 is the solution of R12 = R13 = 0, R16 = 1, R1j = 0, j = 7, .., 12,
Σ6

i=1R1ic
k−1
i = 0, k = 1, 2, 3.

– C2i = 0, i = 1..7, C28 = 1, and otherwise, C2 is a nonzero solution of
β̄3.C2 = 0.

– R2 is the solution of R22 = R23 = 0, R27 = 1, R2j = 0, j = 8, .., 12,
Σ7

i=1R2ic
k−1
i = 0, k = 1, 2, 3, 4.

Then, for almost all values of â76 and â87, and

Â = A + â76C1.R1 + â87C2.R2 (17)

(where Ci.Ri defines an outer product), {b, Â, c} yields another twelve-stage
method of order eight.

Proof The first part of the proof establishes that C1 is a right nullvector of β̄4,
R1 is a left nullvector of {e, Ce, C2e,ACe}, C2 is a right nullvector of β̄3, and
R2 is a left nullvector of {e, Ce, C2e,ACe,C3e,ACCe,CACe,AACe}.

Since the matrix equal to the last six columns of β̄4 has rank 5, there is
a nonzero vector C1 with six leading zeros, C17 = 1, and the remaining five
values selected so that C1 is a right nullvector of β̄4. For distinct nodes {ci, i =
1, 4, 5}, R1 can be obtained as specified. As well, for nodes 1 to 6, either R1i =

0 or q
[2]
i = 0, so R1.ACe = R1.C2e/2 = 0. For C2i = 0, i = 1, .., 7, C28 = 1,

and distinct nodes {ci, i = 8, .., 12}, C2 can otherwise be selected so that C2 is
a right nullvector of {b, bC, bC2, bAA}. With bA = b(I−C) and the elementwise
product b∗ACe, we find C2 is a right nullvector of β̄3. Because nodes {ci, i =
1, 4, 5, 6} are distinct, and C17 = 1 6= 0, with R22 = R23 = 0, R27 = 1,
values of R2i, i = 1, .., 6 can be selected orthogonal to {e, Ce, C2e, C3e}. R2
is orthogonal to the remaining values by the stage order constraints.

We shall refer to a method with format (17) as a nullspace method. The
type A (quadrature) order conditions for the nullspace method are identical
to those for the traditional method, and hence are valid. We now show that
each standard order condition of type B,C, or D for a method with matrix Â
has the same value as the corresponding order condition for the method with
matrix A. To do this, we consider the left side of a standard order condition
(5) with each Â replaced by (17). We then expand the resulting expression, and
consider each term separately. For clarity, we first consider an order condition
with only one occurrence of Â, and for 0 ≤ k + l ≤ 6, this gives

bCkÂCle = bCkACle+ â7,6bC
k.C1.R1.Cle+ â8,7bC

k.C2.R2.Cle

= bCkACle.

because the latter two terms evaluate to zero. Observe, either k < 4 or l < 3:
if k < 4, then bCk.C1 = 0, or else l < 3 and R1.Cle = 0, so the second term
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is zero. As well, either k < 3 or l < 4, and then bCk.C2 = 0 or R2.Cle = 0
respectively, so the third term is zero. For a more general order condition of
type B,C, or D in which Â must occur more than once, the expansion gives a
single term in which only A occurs, or else each pair C1,R1, and C2,R2 occurs
at least once. In each term of the expansion, the first occurrence of C1 or C2
with its orthogonality to β̄4 or β̄3 respectively will give zero, or else a latter
occurrence of R1 or R2 with its orthogonality to terms in Ck, ACk−1, etc.
will give zero. This will leave exactly an equality of the left side of a standard
order condition value from (5) in Â to that with the left side of the same

order condition of (5) with A replacing each occurrence of Â. This establishes

that each order condition (5) for the method (b,Â,c) is satisfied because it is
equivalent to the corresponding order condition (5) for the method (b,A,c).

Hence, coefficients of (b,Â,c) yield a new method for each choice of â7,6 and
â8,7.

ut

Theorem 5 Suppose a method is chosen by Theorem 4 with c6 = 1/2 and
almost any constants â7,6 â8,7. Then columns 7 to 12 of β̄4 is a 20× 6 matrix
of rank 5, and the method is a 12-stage method of order 8.

Proof It has already been established that the six rows of β̂4 usually spans β̄4,
and that as well, both bAAC and bACA must be in this span. To show that
the six specified columns of β̄4 has rank 5, it is sufficient to show that columns
7 to 12 of the 8 × 6 matrix of β̂4 together with those columns of bAAC and
bACA has rank 5. Consideration of bAAC and bACA is needed to ensure they
exist for c6 = 1/2 and most choices of the arbitrary nodes. Now, row reduction
of this 8 × 6 matrix cascades easily to show that this is equivalent to showing
that the 5× 3 matrix RB has rank 2 where the five rows of RB are

– bi(ci − c10)(ci − c11)(ci − 1),
– bAAAi,
– b10(c10 − c11)(c10 − 1).bAAi − bAA10.bi(ci − c11)(ci − 1),
– bAAi(ci − c10),
– bA(C − c11)A,

for i = 7, 8, 9.

This requirement occurs if each 3× 3 submatrix of RB has a determinant
equal to zero. For this it is sufficient to show the determinant is zero for the
three sets of rows {1, 2, 3}, {1, 3, 4} and {1, 3, 5}, for in this case all rows of
RB will be linear combinations of rows 1 and 3, and RB will have rank 2. All
values needed to compute these rows generically can be found using formulas
(12) with (13).

For convenience let

π6,i =
{ i∏

j=7

cj

}
.
{ i∏

6=j<k

(cj − ck)
}
,

f5(c6, .., c10) = a specific non-factorable multilinear multinomial of degree 5.
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Using MAPLE, we find

Det1,2,3 =
(2c6 − 1)(c10 − 1)2(7c26 − 7c6 + 1)(c11 − 1)

254016000π6,9

Det1,3,4 =
(2c6 − 1)(7c26 − 7c6 + 1)(c11 − 1)2f5(c6, .., c10)

71124480000π6,10

Det1,3,5 =
(2c6 − 1)(c10 − 1)(7c26 − 7c6 + 1)(2c10 − 3c11 + 1)(c11 − 1)

254016000π6,9

By the distinctness of nodes 7..12, c10 6= 1 6= c11, so for all three deter-
minants to be zero, it follows that c6 = 1/2, or else c6 = 1/2±

√
21/14. With

either of the latter two choices, some difficulties with applying the algorithm of
Theorem 3 arise; otherwise, these latter two choices have been shown to lead
to (11,8) methods found by Cooper and Verner[4], and Curtis[5]. Hence, for
the methods proposed here, it is necessary that c6 = 1/2. With this choice, the
algorithms of Theorem 3 and Theorem 4 can be applied to find examples in
this new family of (8,12) methods.

ut
Comment: . Even so, an example for one choice of nodes with c6 = 171/410
(and arbitrary a76) was found that gave the 6 × 6 submatrix from columns

7 to 12 of β̂4 the rank 5, the right six columns of all of β̄4 the rank 6, and
which satisfied all the other nullspace constraints exactly, but led to a 12-stage
method only of order 7. (With the single required value of a76, the same set
of nodes led to a classical 12-stage method of order 8 for any value of a87.)

8 An embedded method of order seven

For each traditional (12,8) method with c6 = 1/2, and any value of a8,7, the
previous sections yield a new family of methods in the parameter â7,6. While
we have exchanged the freedom to choose an arbitrary value for c6 to make a7,6

a parameter, we have derived a new family of explicit Runge–Kutta methods.

For each (12,8) method, it remains to show that a new node, c13 = 1, and
appropriate coefficients for the corresponding thirteenth stage, can be used
with the first ten stages to obtain a different (embedded) method of order 7.

The weights b̂i, i = 1, .., 10, 13 provide an order 7 quadrature rule for the nodes
ci, i = 1, .., 10, 13 as follows. Choose b̂i = 0, i = 2, .., 5, and the remaining
seven weights may be determined uniquely by integrating the interpolation
polynomial on the seven restricted nodes {ci, i = 1, 6, .., 10, 13}:

πi(c) =
10,13∏
j=1,6
j 6=i

c− cj
ci − cj

,

b̂i =
1∫

c=0

πi(c)dc.

(18)
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Coefficients for the new stage will be determined by assuming a13,11 = a13,12 =
0, and then using back substitution on

b̂Aj = 0, j = 2..5,

b̂Aj = b̂j(1− cj), j = 1, 6..10.
(19)

Lemma 3 If, for any classical or nullspace twelve stage method of order eight
satisfying β̂i.α̂j = 0, i ≤ j, i + j ≤ 8, an embedded method is selected using
(18) and (19), the embedded method has order seven.

Proof This proof utilizes the orthogonal properties of the main method to estab-
lish that with weights of the embedded method and the new stage, the embedded
method has order seven. Equation (18) implies that

b̂Ck−1e =
1

k
, k = 1, .., 7, (20)

and this equation with (19) implies that

b̂ACk−1e =
1

k(k + 1)
, k = 1..6. (21)

Next, we show that b̂A lies in the span of β3. By direct computation with (12),
(13), (14) and (21) it follows that{

(c11 − 1)̂bA− b(c11I − C)(I − C) + 2bAA
}
Cke = 0, k = 0, ..5. (22)

The expression in braces is zero if i = 11 or 12, and vacuous if i = 13. As
well, the terms for i = 2, .., 5 are zero because of the restrictions imposed
on b, bAA, b̂A. The remaining matrix in {ci, i = 1, 6..10} is van der Monde
with distinct nodes, so it has full rank=6. Accordingly, each remaining term
in braces is zero. Hence,

b̂A =
1

c11 − 1

{
b(c11I − C)(I − C)− 2bAA

}
(23)

implying b̂A lies in the rowspace of β̄3, and hence is orthogonal to α5.
Now, post-multiply (23) by A to get

b̂AA =
1

c11 − 1

{
(b(C11I − C)(I − C)A− 2bAAA)

}
. (24)

Since the right side lies in the rowspace of β̂4, so also does b̂AA, and so b̂AA
is a left nullvector of α4.

Similarly, b̂i, b̂Ai = 0, i = 2, .., 5, and post-multiplication of b̂A in (23) by

AC, CA, AA, with stage-order constraints imply that b̂AAC, b̂ACA, b̂AAA
are orthogonal to {q[2], Cq[2], Aq[2], q[3]}. Required values of the same three
terms post-multiplied by Ck, k = 1, 2, 3, and orthogonality elementwise to fac-
tors arising from order conditions of type D can be shown by similar arguments.
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Post-multiplication of (24) by each of AC, CA, AA, CC gives terms of degree
5, and these lead to the correct values on the right sides. These conditions are
sufficient to show that b̂ and the new stage 13 can be used with the leading ten
stages of the method of order 8 to obtain an (embedded) method of order seven
by back substitution.

ut

9 Efficiency of the new methods

The family of new pairs might be considered as one that intersects with the
family of traditional pairs [10] when c6 = 1

2 . Sets of coefficients for (nearly) op-
timal traditional pairs have been computed and placed on the author’s website.
One possibility is that among the new pairs, the best might be competitive.

Pair Nodes LTE2 D Stability

JHV (1978) 0, 1/4, 1/12 3.82E − 05 5.98 (−5.07, 0]

JHV (1979) 0, 2/27, 1/9 9.82E − 06 15.64 (−5.00, 0]

HNW (DP )(1993) 0, .158, .237 2.24E − 06 43.48 (−5.49, 0]

SS(1993) 0, 19/250, 1/10 1.08E − 06 27.30 (−5.68, 0]

MAPLE(2000) 0, .054, .102 1.55E − 06 20.18 (−5.84, 0]

JHV (2010) 0, 1/20, 341/3200 2.82E − 07 123.37 (−5.86, 0]

JHV (2023) 0, 1/1000, 8/75 2.73E − 07 123.75 (−5.81, 0]

New − JHV (2023) 0, 1/1000, 1/9 3.67E − 06 48.52 (−4.29, 0]

Table 4: Properties of explicit (13,7-8) Runge–Kutta pairs

It is generally accepted that of any pair of explicit Runge-Kutta methods
of successive orders of accuracy, that of higher order is the one accepted for
propagation. The difference of the two approximations is used as an estimate of
the local error. A good measure of the effectiveness of this process as one that
gives accurate solution values to most initial value problems is the 2-norm of
the vector of coefficients of order p+1 of the method of order p. If the step-size
h is small relative to the interval of solution, this indicates the magnitude of
the local error for an IVP. Table 4 reports many well-known (13,7-8) efficient
pairs together with three leading nodes, the 2-norm of the higher order leading
error term, the largest coefficient (D), and the interval of stability of the higher
order method of each pair. Pairs by this author are indicated by year derived,
with characteristic values of the best nullspace method found placed in the
last line. Other methods reported appear in Hairer, Nørsett and Wanner [7]
(pages 181-185 - a (12,8-6) pair), Sharp and Smart [9], and as DVERK78 in
the MAPLE computing system.
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Appendix

This appendix displays an example of a new nullspace (13,7-8) explicit Runge–
Kutta pair. The final line in Table 4 states the properties of a near optimal new
pair found. For that pair, the nodes are c = {0, 1/1000, 1/9, 1/6, 5/12, 1/2, 5/6,
1/6, 2/3, 19/25, 21/25, 1, 1}, a7,6 = 7/3, and a8,7 = 5/267. Here, we report a
nearby method that has LTE2 = 10−5, D = 70.386 and interval of absolute
stability of the method of order eight equal to (−4.567, 0]. To represent this
pair, we first state the pair for which a7,6 = a8,7 = 0 :
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0
1
10

1
10

1
9

4
81

5
81

1
6

1
24 0 1

8

5
12

5
12 0 − 25

16
25
16

1
2

1
20 0 0 1

4
1
5

6
7

1362
1715 0 0 − 468

343
2448
1715 0

1
7 − 29

245 0 0 379
686 − 1312

1715
325
686 0

2
3 − 4402

3645 0 0 64
27 − 464

135
12836
6075

2156
18225

4312
6075

4
5 −

9102
15625 0 0 196

625 −
25888
15625

110324
78125

10143
78125

1063888
859375 −

1863
34375

5
6

48749
435456 0 0 − 845

1296 − 4
81

273431
408240

24157
311040

194677
273240 −

435
19712 −

453125
30046464

1 12471
640 0 0 − 109

16
164
5 − 5131

400 −
57673
1600 −

90397209
2934800

2187
352 − 121875

2944
10206
145

1 3177
1040 0 0 2

13
368
65 − 46

25 − 1519
1300 − 947121

164450 − 1215
1144

9375
4784

b 557
14400 0 0 0 0 248

375
689087
72000

1983226
8254125 − 4617

3520
15625
1472 −

13608
725 − 2

45

b̂ 103
2880 0 0 0 0 64

125 −
16807
72000

285719
1138500 − 243

704
3125
4416 0 0 13

180

Table 5: A nullspace (13,7-8) pair for which the main stage-order is three.

A different pair arises for almost every choice of a7,6 and a8,7 although a
few discrete choices fail to yield a pair as a result of singularities occurring
on application of the algorithm to derive nullspace pairs. For nodes in Table
5, and almost any choice of a7,6, a8,7, a more general pair is obtained by

computing the matrix Â using the following vectors in formula (17):

– Column C1 = [0, 0, 0, 0, 0, 0, 1,− 1
6 ,−

343
243 ,−

2058
3125 ,

343
1944 ,

5831
240 ,

686
195 ]

– Row R1 = [− 2
5 , 0, 0, 1,−

8
5 , 1, 0, 0, 0, 0, 0, 0, 0]

– Column C2 = [0, 0, 0, 0, 0, 0, 0, 1, 2744
1215 ,

24696
78125 ,−

343
9720 ,

5831
200 ,

1372
325 ]

– Row R2 = [1073
343 , 0, 0,−

3330
343 ,

8352
343 ,−

6438
343 , 1, 0, 0, 0, 0, 0, 0]

For a nearly optimal pair with these nodes, choose a7,6 = 27/10, a8,7 = 1/72
in formula (17).

Appendix - an Optimal pair

In contrast to the previous pair, the nodes may be changed to optimize the pair
- in the sense that the 2-norm of the local truncation error coefficients of the
higher order method is minimized. The final line in Table 4 states properties
of this pair. Slight improvements on this pair are possible by reducing c2
towards zero, but such improvements are marginal. Table 6 records coefficients
of {b, b̂, A, c} when a7,6 = 0 and a8,7 = 0 for the optimal pair.
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0
1

1000
1

1000

1
9 − 491

81
500
81

1
6

1
24 0 1

8

5
12

5
12 0 − 25

16
25
16

1
2

1
20 0 0 1

4
1
5

5
6

25
36 0 0 − 125

108
35
27 0

1
6 − 13

108 0 0 7
12 − 7

9
13
27 0

2
3 − 782

135 0 0 98
9 − 256

15
244
27

3
5 3

19
25 −

958339461
195312500 0 0 12942629

1953125 −
662598704
48828125

67903264
9765625

64564071
97656250

98417891
19531250 − 1692691

39062500

21
25

44189608197
29687500000 0 0 − 3731259

1953125
158857104
48828125 −

132199599
156250000 −

2028314421
17187500000 −

28942485159
27812500000 −

1272297
312500000

5151
297616

1 − 874018
61579 0 0 673

463 − 12688
463

1746649
204646 − 443427

20372
495817135
16647628 − 149375

84266
7470703125
1567431866

1562500000
72342361

1 35393
16796 0 0 291

221
1104
221 − 4788

2873 − 1317
4862 − 223415

39338 − 3625
6188

292968750
374084711 0

b 4241
88200 0 0 0 0 9946

23205 − 10449
1925

415449
1573075 − 2025

5096
48828125
44900856

48828125
9843561

463
12600

b̂ 3799
79800 0 0 0 0 538

1365
351
1925

4149
15575 − 45

392
48828125
284372088 0 0 221

4200

Table 6: A basic nullspace (13,7-8) pair for optimality with main stage order
three.

A more general pair is obtained when matrix Â is computed with almost
any values of a7,6 and a8,7 using the four following vectors in (17):

– Column C1 = [0, 0, 0, 0, 0, 0, 1,− 1
5 ,−8,− 13844844

1953125 ,
4279716
1953125 ,−

54108
2315 ,

3564
1105 ]

– Row R1 = [− 2
5 , 0, 0, 1,−

8
5 , 1, 0, 0, 0, 0, 0, 0, 0]

– Column C2 = [0, 0, 0, 0, 0, 0, 0, 1, 10, 38073321
9765625 ,

1069929
9765625 ,−

13527
463 , 891

221 ]

– Row R2 = [8
3 , 0, 0,−

25
3 ,

64
3 ,−

50
3 , 1, 0, 0, 0, 0, 0, 0]

In particular, we get a nearly optimal pair for the choices of a7,6 = 7/3
and a8,7 = 5/267 using these vectors in (17).


