###################################################################### # # A nullspace 'efficient' Runge--Kutta (13:8(7)) pair # # These are exact REAL coefficients # computed using MAPLE for # # a THIRTEEN-stage nullspace pair of methods of # orders p=7 and p=8, with dominant # stage order = 3. # # This procedure is "efficient" in the sense that # that for a specified maximum coefficient from # b and A, it has a propagating formula which almost # minimizes the 2-norm of the local truncation error as # # T92 ~ .000000367 # # The formulas scanned for this optimal formula are # those developed by J.H. Verner and described in the # manuscript "Nullspaces yield new explicit Runge--Kutta # pairs" of 26 pages dated July 3, 2023. It is known # that other pairs provided on this webpage have lower # 2-norms of the local truncation error coefficients, # but this pair has coefficients that require fewer # digits. # # This pair is provided more for the interest of # researchers working on the derivation of new formulas. # ###################################################################### # # NODES # ----- c[1] = 0 c[2] = 1/1000 c[3] = 1/9 c[4] = 1/6 c[5] = 5/12 c[6] = 1/2 c[7] = 5/6 c[8] = 1/6 c[9] = 2/3 c[10] = 19/25 c[11] = 21/25 c[12] = 1 c[13] = 1 # # ******************************************************** # COUPLING COEFFICIENTS # --------------------- a[2,1] = 1/1000 a[3,1] = -491/81 a[3,2] = 500/81 a[4,1] = 1/24 a[4,2] = 0 a[4,3] = 1/8 a[5,1] = 5/12 a[5,2] = 0 a[5,3] = -25/16 a[5,4] = 25/16 a[6,1] = 1/20 a[6,2] = 0 a[6,3] = 0 a[6,4] = 1/4 a[6,5] = 1/5 a[7,1] = -43/180 a[7,2] = 0 a[7,3] = 0 a[7,4] = 127/108 a[7,5] = -329/135 a[7,6] = 7/3 a[8, 1] = 27931/240300 a[8, 2] = 0 a[8, 3] = 0 a[8, 4] = -631/16020 a[8, 5] = 2459/6675 a[8, 6] = -3572/12015 a[8, 7] = 5/267 a[9, 1] = 26114/12015 a[9, 2] = 0 a[9, 3] = 0 a[9, 4] = -7480/801 a[9, 5] = 67264/4005 a[9, 6] = -30640/2403 a[9, 7] = 1051/1335 a[9, 8] = 3 a[10, 1] = 33096587331/17382812500 a[10, 2] = 0 a[10, 3] = 0 a[10, 4] = -1828977848/173828125 a[10, 5] = 62801809904/4345703125 a[10, 6] = -9389764774/869140625 a[10, 7] = 6380757669/8691406250 a[10, 8] = 98417891/19531250 a[10, 9] = -1692691/39062500 a[11, 1] = -1456295425347/2642187500000 a[11, 2] = 0 a[11, 3] = 0 a[11, 4] = 110740056/34765625 a[11, 5] = -21221682384/4345703125 a[11, 6] = 58859060169/13906250000 a[11, 7] = -177381525069/1529687500000 a[11, 8] = -28942485159/27812500000 a[11, 9] = -1272297/312500000 a[11, 10] = 5151/297616 a[12, 1] = 844300798/137013275 a[12, 2] = 0 a[12, 3] = 0 a[12, 4] = -9997568/206035 a[12, 5] = 49636624/1030175 a[12, 6] = -3358834871/91067470 a[12, 7] = -40456983/1813108 a[12, 8] = 495817135/16647628 a[12, 9] = -149375/84266 a[12, 10] = 7470703125/1567431866 a[12, 11] = 1562500000/72342361 a[13, 1] = -26225423/37371100 a[13, 2] = 0 a[13, 3] = 0 a[13, 4] = 807744/98345 a[13, 5] = -205584/37825 a[13, 6] = 5882202/1278485 a[13, 7] = -84543/432718 a[13, 8] = -223415/39338 a[13, 9] = -3625/6188 a[13, 10] = 292968750/374084711 a[13, 11] = 0 a[13, 12] = 0 # ******************************************************** # HIGH AND LOW ORDER WEIGHTS # -------------------------- b[1] = 4241/88200 b[2] = 0 b[3] = 0 b[4] = 0 b[5] = 0 b[6] = 9946/23205 b[7] = -10449/1925 b[8] = 415449/1573075 b[9] = -2025/5096 b[10] = 48828125/44900856 b[11] = 48828125/9843561 b[12] = 463/12600 b[13] = 0 bh[1] = 3799/79800 bh[2] = 0 bh[3] = 0 bh[4] = 0 bh[5] = 0 bh[6] = 538/1365 bh[7] = 351/1925 bh[8] = 4149/15575 bh[9] = -45/392 bh[10] = 48828125/284372088 bh[11] = 0 bh[12] = 0 bh[13] = 221/4200