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1 Introduction

Recently, Crandall in [3] used Andrews’ identity for the cube of the Jacobian
theta function θ4:

θ34(q) =

(∑
n∈Z

(−1)nqn2

)3

= 1 + 4
∞∑

n=1

(−1)nqn

1 + qn
− 2

∞∑
n=1
|j|<n

qn2−j2
(1− qn)(−1)j

1 + qn

to derive new representations for Madelung’s constant and various of its analytic
relatives. He considered the three-dimensional Epstein zeta functionM(s) which
is the analytic continuation of the series∑

x,y,z∈Z
(x,y,z)6=(0,0,0)

(−1)x+y+z

(x2 + y2 + z2)s
.

Then the number M( 1
2 ) is the celebrated Madelung constant. Using a reworking

of the above mentioned Andrews’ identity, he obtained the formula

M(s) = −6(1− 21−s)2ζ2(s)− 4U(s)

where ζ(s) is the Riemann zeta function and

U(s) :=
∑

x,y,z≥1

(−1)x+y+z

(xy + yz + xz)s
.

In view of this representation, Crandall asked what integers are of the form of
xy + yz + xz with x, y, z ≥ 1 and he made a conjecture that every odd integer
greater than one can be written as xy + yz + xz. In this manuscript, we shall
show that Crandall’s conjecture is indeed true. In fact, we are able to show

Theorem 1.1. There are at most 19 integers which are not in the form of
xy + yz + xz with x, y, z ≥ 1. The only such non-square-free integers are the
numbers 4 and 18. The first 16 square-free integers are

1, 2, 6, 10, 22, 30, 42, 58, 70, 78, 102, 130, 190, 210, 330, 462. (1.1)
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If the 19th integer exists, then it must be greater than 1011. Moreover, assuming
the Generalized Riemann Hypothesis (GRH), the 19th integer does not exist and
the list (1.1) is then complete.

If we consider only the even numbers in the list (1.1) and divide them by 2,
then we get the list

1, 3, 5, 11, 15, 21, 29, 35, 39, 51, 65, 95, 105, 165, 231. (1.2)

This is the same list as for disjoint discriminants less than 10, 000 found by Dick-
son in 1929. A discriminant of a binary quadratic form is disjoint if each genus
of this discriminant contains exactly one reduced form. So if N = 2p1p2 · · · pr

with distinct odd prime pj , then −4N is a disjoint discriminant if and only if
the class number h(−4N) equals to 2r. It was Heilbronn who first showed that
limd−→∞ h(−d) =∞. Chowla in [2] improved this result by proving that

lim
d−→∞

h(−d)
2t

=∞

where t is the number of distinct prime factors of d. Chowla’s result immedi-
ately implies that there are only finitely many disjoint discriminants. However,
in order to determine all of them, an explicit estimate is needed. In [6], Wein-

berger used the zero-free region of the L-function L(s) =
∑∞

n=1
(−d

n )
ns where

( ·
n

)
is the Kronecker symbol, and proved that the list (1.2) contains the all disjoint
discriminants less than 1011 and there is exactly one more possible exception
which must be greater than 1011. The exception actually comes from the pos-
sible existence of the Siegel zero of the above L-function. Thus, if we further
assume GRH (in fact, we only need to assume the Siegel zero doesn’t exist),
then the list (1.2) is indeed complete. In our Theorem Theorem 3.1 below, we
prove that a square-free N is not of the form of xy+ zy+xz if and only if −4N
is a disjoint discriminant. Hence, using this and Weinberger’s result, we derive
Theorem Theorem 1.1 for the square-free case.

2 Non-Square-Free Case

Let f be the ternary quadratic form xy+xz+zy. An integer N is representable
by f if there are positive integers x, y and z such that N = f(x, y, z) = xy +
xz + yz. Then we have the following lemma.

Lemma 2.1. An integer N is representable by f if and only if there exist
integers k, d1 and d2 with 1 ≤ k < d1, d2 such that

N + k2 = d1d2. (2.1)

Furthermore, if N is representable by f , then we can choose d1, d2 ≥ 2k ≥ 1.
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Proof. Suppose there are positive integers x, y and z such that N = xy+xz+zy.
Without loss of generality, we assume that x ≥ y ≥ z. Let d1 = y + z. Then

N ≡ yz (mod d1)
≡ z(d1 − z) (mod d1)
≡ −z2 (mod d1)

and thus we can find a positive integer d2 such that N + z2 = d1d2. Then
d1 ≥ 2z. Also

d2 =
N + z2

d1
=
N + z2

y + z
≥ 2z,

as x ≥ z. Hence condition (2.1) is satisfied with k = z and 2k ≤ d1, d2.
Conversely, ifN+k2 = d1d2 for some k satisfying the ostensibly weaker condition
1 ≤ k < d1, d2, then

N = d1d2 − k2

= d1(d2 − k) + (d1 − k)k
= (d2 − k) · (d1 − k) + (d2 − k) · k + (d1 − k) · k.

and hence N is representable by f .

Lemma 2.2. If N is a positive integer satisfying one of the following conditions,
then N is representable by f :

(i) N is odd;

(ii) N ≡ 0 (mod 4), and N > 4;

(iii) N + 1 is not a prime.

Proof. The lemma follows easily from Lemma 2.1 with k = 1 and 2.

We first prove that the numbers 4 and 18 are the only non-square-free inte-
gers which are not representable by f . It is easy to check 4 is not representable
by f . So we suppose N ≥ 5.

Lemma 2.3. If N is not representable by f , then either N is square-free or
N = Mp2 with prime p, square-free integer M and M < p.

Proof. Suppose N is not square-free. Let p2 divides N and write N = p2M . If
M ≥ p, then

N + p2 = p2M + p2 = p2(M + 1).

So the condition (2.1) is satisfied with k = p and this contradicts our assumption
by Lemma 2.1. Therefore M must be less than p. If M is not square-free, say
q2|M , then we may assume q < p, and Mp2

q2 + 1 > q. Thus,

N + q2 = q2
(
Mp2

q2
+ 1
)
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shows that the condition (2.1) is satisfied with k = q and from Lemma 2.1, N
is representable by f . This completes our proof.

Lemma 2.4. If N = 2p2 is not representable, then p = 3 and hence N = 18.

Proof. From Lemma Lemma 2.2 (ii) and (iii), N+1 must be a prime and p > 2.
If p > 3, then p2 ≡ 1 (mod 3) and hence

N + 1 = 2p2 + 1 ≡ 0 (mod 3).

This contradicts N + 1 being prime and so p = 3.

In the quadratic field Q(
√
−N), we factor the algebraic integer −k +

√
−N

as
−k +

√
−N = (A1 +

√
−NB1)(A2 +

√
−NB2)

where Ai and Bi are integers. If both the norms of Ai +
√
−kBi are greater

than k then the condition (2.1) will be satisfied and so N is representable by f .
The following lemma tells us the above factorization is possible when N = Mp2

with M > 2.

Lemma 2.5. Let M be a square-free integer greater than 1 and p be any integer.
Suppose there are coprime integers B1 > B2 > 0 such that

min{4MB2
1B

2
2 , 4MB2

1(B1 −B2)2} > p2 > 4(M + 1)B2
2(B1 −B2)2. (2.2)

Then there exist integers A1 and A2 such that

−k + p
√
−M = (A1 +

√
−MB1)(A2 +

√
−MB2)

and N (Ai +
√
−MBi) > k > 0 for i = 1, 2 where k = MB1B2 −A1A2.

Proof. Given B1 and B2 in the lemma, we define

fp(x) := B2x
2 − px+MB2

1B2, gp(x) := (B1 −B2)x2 + px+MB2
1(B1 −B2)

and
hp(x) := (B2 −B1)x2 + px+MB2

2(B2 −B1).

Using (2.2), we have

fp(x) ≥ fp

(
p

2B2

)
=

1
4B2

(4MB2
1B

2
2 − p2) > 0

for any x. Suppose A1 and A2 are any integers satisfying A1B2 + A2B1 = p.
Thus

k = MB1B2 −A1A2 = MB1B2 −A1

(
p−A1B2

B1

)
=

1
B1

fp(A1) > 0.
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Similarly,

gp(x) ≥ gp

(
− p

2(B1 −B2)

)
=

1
4(B1 −B2)

(4MB2
1(B1 −B2)2 − p2) > 0

from (2.2). Hence

A2
1 +MB2

1 −MB1B2 +A1A2 =
1
B1

gp(A1) > 0.

So N (A1 +
√
−MB1) > k. We now consider hp(x) and let α and β (α < β) be

the positive real roots of hp(x) = 0. In fact,

α =
p−

√
p2 − 4MB2

2(B1 −B2)2

2(B1 −B2)
and β =

p+
√
p2 − 4MB2

2(B1 −B2)2

2(B1 −B2)
.

Again using (2.2), we know that

hp

(
p

2(B1 −B2)

)
=

1
4(B1 −B2)

(p2 − 4MB2
2(B1 −B2)2) > 0.

It follows that hp(x) > 0 for any α < x < β. Consider the linear diophantine
equation

B1x+B2y = p.

Since d := gcd(B1, B2) = 1 (in fact we only need gcd(B1, B2)|p), so all the
solutions of the above diophantine equation is given by

x = x0 +
kB2

d
and y = y0 −

kB1

d

for any integer k and some integers x0 and y0. Now since

β − α =

√
p2 − 4MB2

2(B1 −B2)2

(B1 −B2)
> B2

from (2.2), we can always choose A2 between α and β and some A1 such that

B1A2 +B2A1 = p

but for this particular A2, we have hp(A2) > 0 and hence

A2
2 +MB2

2 −MB1B2 +A1A2 =
1
B2

hp(A2) > 0.

Therefore,
−k + p

√
−M = (A1 +

√
−MB1)(A2 +

√
−MB2)

and N (Ai +
√
−MBi) > k > 0 for i = 1, 2. This proves the lemma.

Theorem 2.6. The numbers 4 and 18 are the only non-square-free integers not
representable by f .
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Proof. We suppose N > 4. Then from Lemma 2.3, N = Mp2 with M < p
where p is a prime and M is square-free. From Lemma 2.2 (i), M must be even.
If M = 2 then by Lemma 2.4, N = 18. Suppose M ≥ 4. By direct checking,
we can assume that p ≥ 2305. For any integer L ≥ 5, we let B1 = 2L and
B2 = L + 1 so that gcd(B1, B2) = 1. The condition (2.2) in Lemma 2.5 now
becomes

16ML2(L− 1)2 > p2 > 4(M + 1)(L2 − 1)2. (2.3)

Note that forM ≥ 4 and L ≥ 5, we have 16ML2(L−1)2 > 4(M+1)((L+1)2−1)2

and hence⋃
L≥5

{(4(M + 1)(L2 − 1)2, 16ML2(L− 1)2)} = (2304(M + 1),∞).

If p2 ≤ 2304(M + 1), then

M < p <
√

2304(M + 1).

It follows that M ≤ 2305 and thus p ≤ 2304. Therefore, p2 > 2304(M + 1) and
there is L ≥ 5 such that condition (2.3) is satisfied. From Lemma 2.5, we now
have

−k + p
√
−M = (A1 +B1

√
−M)(A2 +B2

√
−M)

and k < N (Ai +Bi

√
−M) for i = 1, 2 where k = MB1B2 −A1A2. Thus

N + k2 = Mp2 + k2 = N (A1 +B1

√
−M)N (A2 +B2

√
−M)

and this shows that condition (1.1) is satisfied for this k. This proves our
theorem.

3 Square-Free Case

In this section, we assume N is even and square-free. The main result in this
section is to show that N is not representable by f if and only if −4N is a dis-
joint discriminant. In [3], Crandall gave a new representation for the Madelung
constant based on Andrews’ identity for the cube of the Jacobi theta function
θ4. Crandall observed that

θ34(q) = 1− 6
∑

x,y≥1

(−1)x+yqxy − 4
∑

x,y,z≥1

(−1)x+y+zqxy+xz+yz.

He also observed that this identity relates to the number of representations of
f(x, y, z) = xy + xz + yz as follows:

(−1)Nr3(N) = −6
∑

x,y≥1
xy=N

(−1)x+y − 4
∑

x,y,z≥1
xy+xz+yz=N

(−1)x+y+z (3.1)

where r3(N) is the number of representation of N as a sum of three squares.
Using (3.1), we establish:
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Theorem 3.1. Let N = 2p1p2 · · · pr for distinct odd primes p1, p2, · · · , pr. Then
N is not representable if and only if −4N is a disjoint discriminant.

Proof. Let rt(n) be the number of representations of N as xy + yz + xz for
positive integers x, y and z. Then from (3.1), we have

r3(N) = 6d(N) + 4rt(N) = 12 · 2r + 4rt(N)

because N is even. But N ≡ 2 (mod 4) and if N = xy + yz + xz then exactly
two of x, y, z are even. It was proved by Gauss (see p.170-171 at [4]) that
r3(N) = 12h(−4N). Hence rt(N) = 0 if and only if

h(−4N) = 2r.

Let m be the number of genera for discriminant −4N . From the formula for m
on page 198 of [4], we have m = 2r. Also, we have h(−4N) = mg where g is the
number of forms in a genus. Therefore, h(−4N) = 2r = m if and only if g = 1,
or equivalently if and only if d is disjoint.

Using Weinberger’s result and Theorems 2.6 and 3.1, we may now complete
the proof of Theorem 1.1.

It is still an open problem as to whether the 19th integer exists. For com-
putational purposes, the following result is useful.

Theorem 3.2. A square-free integer N is representable by f if and only if there

is an odd prime p with p <
√

4N
3 such that −N is a quadratic residue mod p.

(See Theorem 4 in [5].)

Proof. Suppose N is representable by f . Then from Lemma 2.1, we have

N + k2 = d1d2 (3.2)

for some 1 ≤ 2k ≤ d1, d2. Suppose d1 ≥ d2. Then we claim that there is a prime
p such that p|d2 but p - N . Suppose not, then d2 must be square-free otherwise
N is not square-free. It follows that every prime dividing d2 must also divide
k and hence d2 ≤ k. This contradicts the condition 2k ≤ d2. This proves the
claim. Hence from (3.2), we see that −N is a quadratic residue modulo p and

N = d1d2 − k2 ≥ d2
2 −

d2
2

4
≥ 3

4
p2.

This proves that p ≤
√

4N
3 .

Conversely, if there is a prime p ≤
√

4N
3 such that −N is a quadratic residue

modulo p, then we choose p to be the smallest among all such primes. Then we
can find an integer k such that 1 ≤ k ≤ p−1

2 and N + k2 = pd1 for some d1.
Suppose d1 < p. If there is a prime q such that q|d1 but q - N , then q ≤ d1 < p
and −N is a quadratic residue modulo q which contradicts p being the smallest
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such prime. Hence every prime dividing d1 must also divide N and k. Since N
is square-free, so is d1 and hence d1 ≤ k. It follows that

N = pd1 − k2 ≤ pd1 − d2
1 ≤

p2

4

which contradicts p ≤
√

4N
3 . Thus we must have d1 ≥ p and using Lemma 2.1,

N is representable by f . This completes our proof.

4 Additional comments

Our root to this development was reflective of the changing nature of mathe-
matical research. A copy of Crandall’s paper [3] was sent by the first author to
Roalnd Girgensohn in Munich who reported the next morning that numerical
computation showed the only square-free counterexamples less than 5,000 were
the ones listed in equation (1.1). These numbers (1, 4 and 18 excluded) were
familiar to the first author as corresponding to disjoint discriminants of the
second type, P which give rise to singular values k2P expressible as products of
fundamental units ([1] pp. 296–300). The most famous of these is k210 =

(
√

2−1)2(2−
√

3)(
√

7−
√

6)2(8−3
√

7)(
√

10−3)2(
√

15−
√

14)(4−
√

15)2(6−
√

35)

given in Ramanujan’s first letter to G.H. Hardy. The two larger values k330 and
k462 are listed in ([1], (9.2.11) and (9.2.12)). Theorem 1.1 was now irresistible
as a conjecture.

After establishing Theorem 1.1, it occurred to us to consult Neil Sloane’s
marvelous On-line Encyclopedia of Integer Sequences which is to be found at:

www.research.att.com/ njas/sequences/eisonline.html and which returned

%I A025052
%S A025052 1,2,4,6,10,18,22,30,42,58,70,78,102,130,190,210,330,462
%N A025052 Numbers not of form ab + bc + ca for 1<=a<=b<=c (probably
list is complete).
%O A025052 1,2
%K A025052 nonn,fini
%A A025052 Clark Kimberling (ck6@cedar.evansville.edu)
%E A025052 Corrected by Ron Hardin (rhh@research.att.com)

when asked about the first thirteen terms of (1.1) with 4 and 18 included. Had
we at the time asked for the square–free members, we would have drawn a blank.
This is no longer the case. Had we checked Sloane’s website initially, we would
almost certainly not have thought further on the matter. After all, the answer
had been found. That said, there appears to be no published literature on the
subject.

8



References

[1] J. M. Borwein and P. B. Borwein, Pi and the AGM, John Wiley, 1987.

[2] S. Chowla, An extension of Heilbronn’s class-number theorem, Quart. J.
Math. Oxford 2, 5 (1934), pp. 304-307.

[3] R. E. Crandall, New representations for the Madelung constant, preprint,
1998.

[4] H. E. Rose, A course in Number Theory, 2nd Ed., Oxford Science Publica-
tions, 1994.

[5] Y. Shao and F. Zhu, On the construction of indecomposable positive definite
quadratic forms over Z, Chin. Ann. of Math., 9B (1), 1988, 79-94.

[6] P.J. Weinberger, Exponents of the class groups of complex quadratic fields,
Acta. Arith., XXII, (1973), 117-124.

JONATHAN BORWEIN, Department of Mathematics and Statistics, Simon
Fraser University, Burnaby, B.C., Canada V5A 1S6

and
KWOK-KWONG STEPHEN CHOI,1 Department of Mathematics, The Uni-

versity of Hong Kong, Pokfulam Road Hong Kong

1At the time the research was completed K.K. Choi was a Pacific Institute of Mathematics
Postdoctoral Fellow and the Institute’s support is gratefully acknowledged.

9


