Feynman graphs and a chord diagram expansion

Karen Yeats

Summer CMS meeting
Regina
June 3, 2012

Building trees
Let $B_{+}(F)$ be the tree constructed by adding a new root above each tree from the forest F.
Eg:

$$
B+(0
$$

$$
\left.\wp_{0} \quad 0\right)=
$$

$$
\int_{0}^{a}
$$

my trees done come with a plover embedding

Tree recurrences

Let X be a formal power series with coefficients from the algebra of trees. What does

$$
X=\stackrel{k}{\mathbb{I}+m p t y} \text { tree }
$$

count?

$$
\left.x=1+x \cdot+x^{2} q+x^{3} \xi+x^{4}\right\}+\cdots
$$

More tree recurrences
What does

$$
X=\mathbb{I}-x B_{+}\left(\frac{1}{X}\right)
$$

count?

$$
\begin{aligned}
X=1-x \cdot-x^{2} q-x^{3}(q+\Omega)-x^{4}(q & +\hat{Q}+2 \Omega \\
q & +\mathbb{N}) \\
& +\ldots
\end{aligned}
$$

$$
\bigcap=\widehat{N}
$$

Feynman graphs

Feynman graphs describe interactions in particle physics. They are graphs built of half-edges with specified

- edge types (oriented and unoriented) and
- vertex types

They may have external edges.

Eg: QED

Qheter electror
edge types in QED m vertex

A Feynman graph is 1PI if it is 2-edge-connected.
Feynman rules map Feynman graphs to (formal) integrals.

Divergences

A Feynman graph is divergent if the associated integral diverges. If we have set up our types correctly, this will occur when the external edges of the graph give one of the edge or vertex types.
Eg:

m

A graph is primitive if it has no divergent subgraphs.

B_{+}for graphs

Write B_{+}^{γ} for insertion into the primitive graph γ.
Eg:

By weighting the insertions by an appropriate combinatorial coefficient, and, where necessary, working in a quotient algebra (Ward identities...) we obtain that B_{+}is a Hochschild 1-cocycle for the renormalization Hopf algebra.

$$
\Delta B_{+}=\left(\mathrm{id} \otimes B_{+}\right) \Delta+B_{+} \otimes \mathbb{I}
$$

Combinatorial Dyson-Schwinger equations
The recurrences in Feynman diagrams which describe how to build the graphs of a theory out of smaller graphs are the combinatorial DysonSchwinger equations. For today

$$
\begin{aligned}
& \text { For today } \\
& \left.X=\mathbb{I} \pm \sum_{k \geq 1} x^{k} B_{-}^{c_{k}^{k}} \mid X Q^{k}\right) \quad \text { courlimite graph size } k \\
&
\end{aligned}
$$

where $Q=X$ s
Eg (Broadhurst and Kreimer):

$$
\begin{aligned}
& X=1-x B_{+}\left(\frac{1}{x}\right) \quad \frac{1}{x}=\frac{x}{x^{2}} \\
& =\|-x \xrightarrow[i]{i}-x^{2} \xrightarrow[i]{i} \\
& \text { so } s=2 \\
& -x^{3}(\underset{y}{r y}
\end{aligned}
$$

Analytic Dyson-Schwinger equations

Analytic Dyson-Schwinger equations are the result of applying Feynman rules to combinatorial Dyson-Schwinger equations.

- The recursive structure of the DSE takes care of the recursive structure of renormalization.
- The counting variable x becomes the coupling constant
- We get new analytic variables coming from the external momenta. For today just one variable L.
Xecomes the Green function $G(x, L)$.
After some manipulation we obtain

$$
\left.\frac{G(x, L)}{}=1 \pm \sum_{k \geq 1} x{ }^{k} G\left(x, \partial_{-}\right) 1-s k\right)\left.\left(e^{-L \rho}-1\right) F_{k}(\rho)\right|_{\rho=0}
$$

Where $F_{k}(\rho)$ is the integral for γ_{k} regularized by a parameter ρ which marks the insertion place.

Now you can forget all that

Today we are looking at $s=2$ and $k=1$. That is

$$
G(x, L)=1-\left.\underset{x}{\downarrow} G\left(x, \partial_{-\rho}\right)^{-1}\left(e^{-L \rho}-1\right) F(\rho)\right|_{\rho=0}<
$$

where

$$
F(\rho)=\frac{f_{0}}{\rho}+f_{1}+f_{2} \rho+f_{3} \rho^{2}+\cdots
$$

Write

$$
G(x, L)=1-\sum_{n \geq 1} \gamma_{n}\left(x L^{n}\right.
$$

then the Dyson-Schwinger equation determines the γ_{n} in terms of the f_{i}, but not in a nice way.

This talk will show a nice way to untangle this with an expansion indexed by chord diagrams. (Joint work with Dirk Kreimer and Nicolas Marie)

Rooted connected chord diagrams

A chord diagram is rooted if it has a distinguished vertex. oriented A chord diagram is connected if no set of chords can be separated from the others by a line.
Eg:

These are really just irreducible matchings of points along a line.

Intersection graphs and bad chords

The intersection graph of a chord diagram is the graph with

- vertices: the chords of the diagram
- adjacencies: vertices where the corresponding chords cross.

The root and counterclockwise order of the chord diagram let us direct the intersection graph.
Say a chord is bad if it is terminal in the directed intersection graph.
Eg:

Recursive chord order

Let C be a connected rooted chord diagram. Order the chords recursively:

- c_{1} is the root chord
- Order the connected components of $C \backslash c_{1}$ as they first appear running counterclockwise, D_{1}, D_{2}, \ldots Recursively order the chords of D_{1}, then of D_{2}, and so on.

Eg:

The bad chords come from applications of the base case: a diagram with only one chord.

Index lists

Let C be a connected rooted chord diagram. Define

- $w(C)=\left\{i: c_{i}\right.$ is bad $\}$ (using the recursive chord order)
- $i(C)$ is the list of differences of successive elements in $w(C)$ padded with 0s to contain $|C|-1$ elements.
- $b(C)$ is the minimum index of a bad chord.

Eg:

$$
\begin{aligned}
& w(C)=\{4,5\} \\
& i(C)=(0,0,0,1) \\
& b(C)=4
\end{aligned}
$$

These will be our index lists: If I is a list of nonnegative integers let $f_{I}=\prod_{i \in I} f_{i}$.

Goal

Theorem 1

$$
\gamma_{i}(x)=\frac{(-1)^{i}}{i!} \sum_{\substack{C \\ b(C) \geq i}} x^{\mid C f_{i(C)}} f_{b(C)-i-1}
$$

where C runs over rooted d_{v} chord diagrams, solves the DSE

$$
G(x, L)=1-\left.x G\left(x, \partial_{-\rho}\right)^{-1}\left(e^{-L \rho}-1\right) F(\rho)\right|_{\rho=0}
$$

where

$$
\begin{aligned}
F(\rho) & =\frac{f_{0}}{\rho}+f_{1}+f_{2} \rho+f_{3} \rho^{2}+\cdots \\
G(x, L) & =1-\sum_{n \geq 1} \gamma_{n}(x) L^{n}
\end{aligned}
$$

We will prove the theorem by proving two recurrences.

The root-share decomposition

We can insert a rooted connected chord diagram C_{1} into another C_{2}, by

- choosing an interval of C_{2} other than the one before the root
- putting the root of C_{1} just before the root of C_{2} and
- putting the rest of C_{2} in the chosen interval

Since the diagrams are connected C_{1} and C_{2} can be recovered. This is the root-share decomposition.

The first recurrence - chord diagrams

The root-share decomposition is classical. Nijenhuis and Wilf (1978) use it to prove the recurrence (originally due to Stein (1978) and rephrased by Riordan)

$$
s_{n}=\sum_{k=1}^{n-1}(2 k-1) s_{k} s_{n-k} \quad \text { for } n \geq 2
$$

where s_{n} is the number of connected rooted chord diagrams with n chords.

This recurrence can be extended to keep track of the bad chords. Let

$$
g_{k, i}=\sum_{\substack{C \\|C|=i \\ b(C) \geq i}} \xlongequal{f_{i(C)} f_{b(C)-i-1}}
$$

where C runs over rooted connected chord diagrams. Then

$$
g_{k, i}=\sum_{\ell=1}^{i-1}(2 \ell-1) g_{1, i-\ell} g_{k-1, \ell} \quad \text { for } 2 \leq k \leq i
$$

The first recurrence - DSEs

We had

$$
g_{k, i}=\sum_{\ell=1}^{i-1}(2 \ell-1) g_{1, i-\ell} g_{k-1, \ell} \quad \text { for } 2 \leq k \leq i
$$

Let

$$
\gamma_{k}=\frac{(-1)^{k}}{k!} \sum_{i \geq k} g_{k, i} x^{i}
$$

then the recurrence becomes

$$
\gamma_{k}(x)=\frac{1}{k} \gamma_{1}(x)\left(-1+2 x \frac{d}{d x}\right) \gamma_{k-1}(x) \text { for } k \geq 2 .
$$

which was known (Broadhurst and Kreimer 2000) to be true for γ_{k} satisfying the DSE.

Now we know the γ_{k} depend correctly on γ_{1} for the theorem.

Binary trees

To obtain the second recurrence, we need another representation for the chord diagrams.
Let C be a rooted chord diagram. Build a binary tree with leaves labelled $1,2, \ldots|C|$ as follows

- If $|C|=1$ then the tree has one vertex labelled 1
- Otherwise let C_{1} and C_{2} be the root-share decomposition of C with the insertion into slot k, and t_{1} and t_{2} the corresponding trees.
- Add 1 to each label of t_{2}
- Add $\left|C_{2}\right|$ to each label of t_{1} except for the label 1.
- Find the k th vertex of t_{2} in a preorder traversal, replace this vertex with a new vertex with t_{1} as its right subtree and what had been there as its left subtree.

Binary tree example

The second recurrence

To prove the theorem it remains to show

$$
\gamma_{1}=\left.x\left(1-\sum_{k \geq 1} \gamma_{k}\left(\partial_{-\rho}\right)^{k}\right)^{-1}(-\rho) F(\rho)\right|_{\rho=0}
$$

With a couple of pages of manipulations, we can check that it suffices to show

$$
\sum_{\substack{C \\|C|=i+1 \\ b(C)=j+1}} f_{i(C)}=\sum_{k=1}^{i} \sum_{\ell=1}^{j}\binom{j}{\ell}\binom{\mid \text { eff child }}{\sum_{\substack{C \\|C|=k \\ b(C) \geq \ell}} f_{i(C)} f_{b(C)-\ell-1}}\binom{\text { right chi'l' }}{\sum_{\substack{C \\|C|=i-k+1 \\ b(C)=j-\ell+1}} f_{i(C)}}
$$

for $i \geq 1$ and $j \geq 1$, where the sums run over connected rooted chord diagrams with the indicated conditions.

Comments on the second recurrence

The second recurrence naturally comes by viewing a binary tree in terms of its left and right subtrees.

It is not apparent directly at the level of the chord diagrams. Eg:

Conclusions

We solve the Dyson-Schwinger equation to get the Green function as a sort of multivariate generating function for chord diagrams

$$
G(x, L)=1-\sum_{i \geq 1} \frac{(-L)^{i}}{i!} \sum_{\substack{C \\ b(C) \geq i}} x^{|C|} f_{i(C)} f_{b(C)-i-1}
$$

This is a new expansion for the Green function and it completely unwinds both the combinatorial and analytic sides of the Dyson-Schwinger equation.

The next steps are

- exploring further the objects and constructions we used

- more general Dyson-Schwinger equations, beginning with other values of s.

