Combinatorial approaches in quantum field theory

Karen Yeats

SFU, July 25, 2013

Combinatorics providing insights in QFT

	Things you can do	Combinatorics to use
Mathematizing	Connos-Kreimer	Comb. Hopf alg
Renormal-	Hopf alg	how to decompose graph, strees
ization	math framework her renormalization	into sub objects
Evaluating	High loop scale	graph neory
individual	U integrals	arach polynomials
Feynman	Why perficular #5	
graphs	show up	
Moving	master integrali	Matrids
from scalar		
field theories	Ø	corolla polyronal
to gauge	bootstraping diff	
theories	ii op	
Understanding		
Dyson-		
Schwinger		
equations		

Some refs

	References
Mathematizing	arXiv:hep-th/0211136
Renormal-	arXiv:hep-th/0506190
ization	arXiv:1202.3552
Evaluating	arXiv:0804.1660
individual	arXiv:0801.2856
Feynman	$\underline{arXiv:0910.5429}$
graphs	arXiv:1208.1890
Moving from	arXiv:1010.5804
scalar field	arXiv:1208.6477
theories to	<u>arXiv:1207.5460</u>
gauge theories	
Understanding	arXiv:hep-th/0605096
Dyson-	arXiv:0810.2249
Schwinger	$\underline{\operatorname{arXiv:0805.0826}}$ \leftarrow
equations	<u>arXiv:1210.5457</u>

Many of these have appeared in journals now. And there are many more.

Simple nestings and chainings

Today there's only time to talk about one of these, so I will talk about Dyson-Schwinger equations.

An example in Yukawa theory (Broadhurst-Kreimer arXiv:hep-th/0012146)

How to capture the combinatorics of the recursion?

Combinatorial Dyson-Schwinger equations

We can capture other recursions in a similar language – this is equivalent to the diagrammatic viewpoint on Dyson-Schwinger equations. F_{g} (FD):

Putting the analysis back in

In the Yukawa example we had

$$G(x,L) = 1 - \frac{x}{q^2} \int d^4k \frac{k \cdot q}{k^2 G(x,\log k^2/\mu^2)(k+q)^2} - \dots \Big|_{q^2 = \mu^2}$$

- plug in $G(x, L) = 1 \sum \gamma_k(x) L^k$
- use $\partial_{\rho}^{k} x^{-\rho}|_{\rho=0} = (-1)^{k} \log^{k}(x)$
- switch the order of \int and ∂

to obtain

$$G(x,L) = 1 - xG(x,\partial_{-\rho})^{-1}(e^{-L\rho} - 1)F(\rho)\big|_{\rho=0}$$

Where $F(\rho)$ is the integral for the primitive regularized by a parameter ρ which marks the insertion place.

Today's analytic Dyson-Schwinger equations

Beginning with a combinatorial Dyson-Schwinger equation

$$X = \mathbb{I} \pm \sum_{k \ge 1} x^k B_+^{\gamma_k} (XQ^k)$$

where $Q = X^{-s}$, define the analytic Dyson-Schwinger equation of to be

$$G(x,L) = 1 \pm \sum_{k \ge 1} x^k G(x,\partial_{-\rho})^{1-sk} (e^{-L\rho} - 1) F_k(\rho)|_{\rho=0}$$

where $F_k(\rho)$ is the Feynman integral for γ_k regularized by a parameter ρ which marks the insertion place.

More insertion places and systems get more complicated.

Rearranging Dyson-Schwinger equations

The Yukawa example is particularly nice and can in fact be solved.

This example works so well because the Dyson-Schwinger equation had

- One primitive graph
- which had a particularly nice integral (scaled just a geometric series)
- inserted into one place

The program of arXiv:0810.2249, Memoir. Am. Math. Soc. 211, no. 995, with an important improvement in arXiv:1302.0080, was to generalize this nice situation into a general reduction process for Dyson-Schwinger equations.

Some steps make combinatorial sense, others do not.

Finding the γ_k recurrence

Write

$$G(x,L) = 1 \pm \sum_{k \ge 1} \gamma_k(x) L^k$$

We can find a recurrence for γ_k in terms of lower γ_j – it is the renormalization group equation translated into this language:

$$\left(\frac{\partial}{\partial L} + \beta(x)\frac{\partial}{\partial x} \pm \gamma_1(x)\right)G(x,L) = 0$$

Extracting the coefficient of L^{k-1} gives a recurrence for γ_k

$$\gamma_k = \frac{1}{k}\gamma_1(x)(-\operatorname{sign}(s) + |s|x\partial_x)\gamma_{k-1}(x)$$

for $k \geq 2$

Trading ρ for x

Notice that $\gamma_k(x)$ begins with an x^k term. So the lowest possible power of x in

$$x^k G(x,\partial_{-\rho})^{1-sk} \rho^\ell|_{\rho=0}$$

is

Consequently there is a unique sequence r_k such that

$$\sum_{k} x^{k} G(x, \partial_{-\rho})^{1-sk} (e^{-L\rho} - 1) F_{k}(\rho) \Big|_{\rho=0}$$
$$= \sum_{k} x^{k} G(x, \partial_{-\rho})^{1-sk} (e^{-L\rho} - 1) \frac{r_{k}}{\rho(1-\rho)} \Big|_{\rho=0}$$

The differential equation

Taking the coefficient of L and L^2 in

$$G(x,L) = 1 \pm \sum_{k} x^{k} G(x,\partial_{-\rho})^{1-sk} (e^{-L\rho} - 1) \frac{r_{k}}{\rho(1-\rho)} \Big|_{\rho=0}$$

and then using the γ_k recurrence we get

$$\int \gamma_1(x) = -P(x) + \gamma_1(x)(\operatorname{sign}(s) - |s|x\partial_x)\gamma_1(x)$$

where

$$P(x) = \sum_{k \ge 1} r_k x^k$$

The differential equation in QED

Joint work with Guillaume van Baalen, Dirk Kreimer, and David Uminsky, arXiv:0805.0826.

In QED in the Baker, Johnson, Willey gauge, we only need to worry about the photon, so we are in the single equation case.

s = 1 because

Picture

There are two behaviours. The *separatrix* is the separating solution.

Results

If P(x) is \mathcal{C}^2 and P(x) > 0 for $x \in (0, x_0)$ then either

- γ_1 crosses the x axis with a vertical tangent and returns to -1, or
- P and γ_1 have a common zero, or
- γ_1 is positive and exists for all x

In the last case if also P(x) > 0 for all x > 0 and P(x) is increasing then either

• γ_1 is the separatrix and diverges in finite L (a Landau pole) iff

$$\int_{x_0}^{\infty} \frac{2dz}{z(\sqrt{1+4P(z)}-1)} < \infty$$

• γ_1 is larger than the separatrix and diverges in finite L regardless of P.

Other results

We also thought about other values of s including in arXiv:0906.1754 negative values of s which have quite a different flavour (spirals!) and form a model of massless QCD.

Looking at s = 2 we can give an explicit combinatorial solution as a sum over rooted connected chord diagrams

Marc Bellon and his collaborators have looked at the Wess-Zumino model, eg arXiv:1205.0022, and specific approximations to P.