Combinatorial approaches in quantum field theory

Karen Yeats

SFU, July 25, 2013

Combinatorics providing insights in QFT

Some refs

	References
Mathematizing Renormalization	arXiv:hep-th/0211136 arXiv:hep-th/0506190 arXiv:1202.3552
Evaluating individual Feynman graphs	arXiv:0804.1660 arXiv:0801.2856 arXiv:0910.5429 arXiv:1208.1890
Moving from scalar field theories to gauge theories	$\begin{aligned} & \text { arXiv: } 1010.5804 \\ & \text { arXiv:1208.6477 } \\ & \underline{\text { arXiv: } 1207.5460} \end{aligned}$
Understanding Dyson- Schwinger equations	arXiv:hep-th/0605096arXiv:0810.2249 arXiv:0805.0826arXiv: 1210.5457

Simple nestings and chainings

Today there's only time to talk about one of these, so I will talk about Dyson-Schwinger equations.

An example in Yukawa theory (Broadhurst-Kreimer arXiv:hep-th/0012146)

$$
\begin{aligned}
& \qquad \mathcal{G}(x, L)=1-\frac{\infty}{q^{2}} \int d^{4} k \frac{k \cdot q}{k^{2}\left(9\left(x, \log k^{2} / \mu^{2}\right)\right)(k+q)^{2}}-\left.\cdots\right|_{q^{2}=\mu^{2}} \\
& \text { where } L=\log \left(q^{2} / \mu^{2}\right)
\end{aligned}
$$

How to capture the combinatorics of the recursion?

2-1

Combinatorial Dyson-Schwinger equations

We can capture other recursions in a similar language - this is equivalent to the diagrammatic viewpoint on Dyson-Schwinger equations.

Putting the analysis back in

In the Yukawa example we had

$$
G(x, L)=1-\frac{x}{q^{2}} \int d^{4} k \frac{k \cdot q}{k^{2} G\left(x, \log k^{2} / \mu^{2}\right)(k+q)^{2}}-\left.\cdots\right|_{q^{2}=\mu^{2}}
$$

- plug in $G(x, L)=1-\sum \gamma_{k}(x) L^{k}$
- use $\left.\partial_{\rho}^{k} x^{-\rho}\right|_{\rho=0}=(-1)^{k} \log ^{k}(x)$
- switch the order of \int and ∂
to obtain

$$
G(x, L)=1-\left.x G\left(x, \partial_{-\rho}\right)^{-1}\left(e^{-L \rho}-1\right) F(\rho)\right|_{\rho=0}
$$

Where $F(\rho)$ is the integral for the primitive regularized by a parameter ρ which marks the insertion place.

Today's analytic Dyson-Schwinger equations

Beginning with a combinatorial Dyson-Schwinger equation

$$
X=\mathbb{I} \pm \sum_{k \geq 1} x^{k} B_{+}^{\gamma_{k}}\left(X Q^{k}\right)
$$

where $Q=X^{-s}$, define the analytic Dyson-Schwinger equation of to be

$$
G(x, L)=1 \pm\left.\sum_{k \geq 1} x^{k} G\left(x, \partial_{-\rho}\right)^{1-s k}\left(e^{-L \rho}-1\right) F_{k}(\rho)\right|_{\rho=0}
$$

where $F_{k}(\rho)$ is the Feynman integral for γ_{k} regularized by a parameter ρ which marks the insertion place.

More insertion places and systems get more complicated.

Rearranging Dyson-Schwinger equations

The Yukawa example is particularly nice and can in fact be solved.

This example works so well because the Dyson-Schwinger equation had

- One primitive graph
- which had a particularly nice integral (scaled just a geometric series)
- inserted into one place

The program of arXiv:0810.2249, Memoir. Am. Math. Soc. 211, no. 995 , with an important improvement in arXiv:1302.0080, was to generalize this nice situation into a general reduction process for DysonSchwinger equations.

Some steps make combinatorial sense, others do not.

Finding the γ_{k} recurrence

Write

$$
G(x, L)=1 \pm \sum_{k \geq 1} \gamma_{k}(x) L^{k}
$$

We can find a recurrence for γ_{k} in terms of lower γ_{j} - it is the renormalization group equation translated into this language:

$$
\left(\frac{\partial}{\partial L}+\beta(x) \frac{\partial}{\partial x} \pm \gamma_{1}(x)\right) G(x, L)=0
$$

Extracting the coefficient of L^{k-1} gives a recurrence for γ_{k}

$$
\gamma_{k}=\frac{1}{k} \gamma_{1}(x)\left(-\operatorname{sign}(s)+|s| x \partial_{x}\right) \gamma_{k-1}(x)
$$

for $k \geq 2$

Trading ρ for x

Notice that $\gamma_{k}(x)$ begins with an x^{k} term. So the lowest possible power of x in

$$
\left.x^{k} G\left(x, \partial_{-\rho}\right)^{1-s k} \rho^{\ell}\right|_{\rho=0}
$$

is

Consequently there is a unique sequence r_{k} such that

$$
\begin{aligned}
& \left.\sum_{k} x^{k} G\left(x, \partial_{-\rho}\right)^{1-s k}\left(e^{-L \rho}-1\right) F_{k}(\rho)\right|_{\rho=0} \\
& =\left.\sum_{k} x^{k} G\left(x, \partial_{-\rho}\right)^{1-s k}\left(e^{-L \rho}-1\right) \frac{r_{k}}{\rho(1-\rho)}\right|_{\rho=0}
\end{aligned}
$$

The differential equation

Taking the coefficient of L and L^{2} in

$$
G(x, L)=1 \pm\left.\sum_{k} x^{k} G\left(x, \partial_{-\rho}\right)^{1-s k}\left(e^{-L \rho}-1\right) \frac{r_{k}}{\rho(1-\rho)}\right|_{\rho=0}
$$

and then using the γ_{k} recurrence we get

$$
\gamma_{1}(x)=-P(x)+\gamma_{1}(x)\left(\operatorname{sign}(s)-|s| x \partial_{x}\right) \gamma_{1}(x)
$$

where

$$
P(x)=\sum_{k \geq 1} r_{k} x^{k}
$$

The differential equation in QED

Joint work with Guillaume van Baalen, Dirk Kreimer, and David Uminsky, arXiv:0805.0826.

In QED in the Baker, Johnson, Willey gauge, we only need to worry about the photon, so we are in the single equation case.
$s=1$ because

Picture

There are two behaviours. The separatrix is the separating solution.

Results

If $P(x)$ is \mathcal{C}^{2} and $P(x)>0$ for $x \in\left(0, x_{0}\right)$ then either

- γ_{1} crosses the x axis with a vertical tangent and returns to -1 , or
- P and γ_{1} have a common zero, or
- γ_{1} is positive and exists for all x

In the last case if also $P(x)>0$ for all $x>0$ and $P(x)$ is increasing then either

- γ_{1} is the separatrix and diverges in finite L (a Landau pole) iff

$$
\int_{x_{0}}^{\infty} \frac{2 d z}{z(\sqrt{1+4 P(z)}-1)}<\infty
$$

- γ_{1} is larger than the separatrix and diverges in finite L regardless of P.

Other results

We also thought about other values of s including in arXiv:0906.1754 negative values of s which have quite a different flavour (spirals!) and form a model of massless QCD.

Looking at $s=2$ we can give an explicit combinatorial solution as a sum over rooted connected chord diagrams

Marc Bellon and his collaborators have looked at the Wess-Zumino model, eg arXiv:1205.0022, and specific approximations to P.

