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! Plane partitions are another integrable model.

! Can be identified with (a special case of) the 6 vertex model.

! Plane partitions=rhombus tilings of a hexagon.
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Plane partitions → 6 vertex model?

There are three types of blocks/tiles:

a b c
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Plane partitions → 6 vertex model?

a b c
Any row in a plane partition is of the form:

. . . . . .

which is . . . c c c a a b . . .

A plane partition configuration is entirely determined by the
presence of horizontal lines.
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Plane partitions → 6 vertex model?

a b c
Recall the 6 vertex model:

a1 a2 b1 b2 c1 c2

0
b c 0 a

√
bc

√
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Plane partitions → 6 vertex model?

! We see that this is actually a five vertex model.

! We cannot go from here to Alternating Sign Matrices, as
there are different numbers of tiles in different rows.

! However, there are subclasses of plane partitions, one of which
is conjectured to be in bijection with ASMs.
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1. What are the number of tilings in a given hexagon?

! We could not make use of the connection to the 6 vertex
model, what other strategies will this new interpretation give?

2. Can we enumerate (and define!) ‘symmetric’ hexagons?
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Answer 1:

Theorem
(MacMahon) The number of rhombus tilings of a hexagon with
sides a, b, c , a, b, c is

a∏

i=1

b∏

j=1

c∏

k=1

i + j + k − 1

i + j + k − 2
.
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Answer 2:

! 10 subcases of plane partitions;

! 9 cases have symmetries;

! 8 of these have been enumerated;

! 1 case has an ‘almost proof’;
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Proof
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Preliminaries

First, formalize the ’straightening’ that occurred between the plane
partition and hexagon.

⇔ (α)

⇔ (β)

⇔ (γ)
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Non intersecting lattice paths

Consider the natural mapping between rhombus tilings of hexagons
and non intersecting lattice paths

There are 4 paths from the bottom to the top of this hexagon
through tiles of shape α and β.
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Non intersecting lattice paths

These non intersecting lattice paths completely determine the
tiling of the hexagon of shape a× b × c!
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Lindstrom’s Theorem
Proof
Lindstrom’s theorem: applicability?
Size of plane partition

Goal: Count the number of non intersecting paths on a hexagon
of shape a× b × c .
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Non intersecting lattice paths

Steps (1, 1) and (1,−1).
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Non intersecting lattice paths

Here: how many ways to draw 4 non intersecting paths from
(0, 1), (0, 2), (0, 3), (0, 4) to (8, 1), (8, 2), (8, 3), (8, 4)?

General: How many ways of drawing b paths from
(0, 1), . . . , (0, b) to (a + c , 1), . . . , (a + c , b)?
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Preliminaries
Lindstrom’s Theorem
Proof
Lindstrom’s theorem: applicability?
Size of plane partition

! Use the Lindstrom, Gessel-Viennot theorem that gives a
method for finding non intersecting paths between two sets of
vertices in a digraph through a determinant of all paths
between two sets of vertices.
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! D acyclic digraph

! k-vertex is k tuple of vertices;

! u=(u1, . . . , uk), v=(v1, . . . , vk) k-vertices
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! k-path A = (A1,A2, . . . ,Ak) (where Ai is a path from ui to
vi )

A∗ := ({u1, 1, 2, v1}, {u2, 1, 4, v2}, {u3, 5, v3})

Sophie Burrill Plane partitions and tilings



Introduction
The 6 vertex model

Questions
Non intersecting lattice paths

Symmetries of plane partitions
Determinant evaluation

Preliminaries
Lindstrom’s Theorem
Proof
Lindstrom’s theorem: applicability?
Size of plane partition

! k-path A = (A1,A2, . . . ,Ak) (where Ai is a path from ui to
vi )

A∗ := ({u1, 1, 2, v1}, {u2, 1, 4, v2}, {u3, 5, v3})

Sophie Burrill Plane partitions and tilings



Introduction
The 6 vertex model

Questions
Non intersecting lattice paths

Symmetries of plane partitions
Determinant evaluation

Preliminaries
Lindstrom’s Theorem
Proof
Lindstrom’s theorem: applicability?
Size of plane partition

! k-path A = (A1,A2, . . . ,Ak)

A∗∗ = ({u1, 1, 2, v1}, {u2, 3, 4, v2}, {u3, 5, v3})

A∗∗ is disjoint (non intersecting).

Sophie Burrill Plane partitions and tilings



Introduction
The 6 vertex model

Questions
Non intersecting lattice paths

Symmetries of plane partitions
Determinant evaluation

Preliminaries
Lindstrom’s Theorem
Proof
Lindstrom’s theorem: applicability?
Size of plane partition

! k-path A = (A1,A2, . . . ,Ak)

A∗∗ = ({u1, 1, 2, v1}, {u2, 3, 4, v2}, {u3, 5, v3})

A∗∗ is disjoint (non intersecting).

Sophie Burrill Plane partitions and tilings



Introduction
The 6 vertex model

Questions
Non intersecting lattice paths

Symmetries of plane partitions
Determinant evaluation

Preliminaries
Lindstrom’s Theorem
Proof
Lindstrom’s theorem: applicability?
Size of plane partition

! k-path A = (A1,A2, . . . ,Ak)

A∗∗ = ({u1, 1, 2, v1}, {u2, 3, 4, v2}, {u3, 5, v3})

A∗∗ is disjoint (non intersecting).

Sophie Burrill Plane partitions and tilings



Introduction
The 6 vertex model

Questions
Non intersecting lattice paths

Symmetries of plane partitions
Determinant evaluation

Preliminaries
Lindstrom’s Theorem
Proof
Lindstrom’s theorem: applicability?
Size of plane partition

! Give weight to every edge;

! Path weight:=product of edge weights;

! k-path weight:=product of path weights

For simplicity, in this example each edge gets weight 1.
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P(ui , vj):=the set of paths from ui to vj

Pw (ui , vj):= sum of their weights.

i , j P(ui , vj) Pw (ui , vj) i , j P(ui , vj) Pw (ui , vj)

1,1 {u1, 1, 2, v1} 1 2,3 {u2, 1, 4, v3}, 2
{u2, 3, 4, v3}

1,2 {u1, 1, 4, v2} 1 3,1 ∅ 0
1,3 {u1, 1, 4, v3} 1 3,2 ∅ 0
2,1 {u2, 1, 2, v1} 1 3,3 {u3, 5, v3} 1
2,2 {u2, 1, 4, v2}, 2

{u2, 3, 4, v2}
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! P(u, v):= the set of k-paths from u to v;

! Pw (u, v):= sum of their weights.

Example: P(u, v) = {A∗,A∗∗}, Pw (u, v) = 2 .
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! N(u, v):= subset of P(u, v), disjoint paths ;

! Nw (u, v):=sum of their weights.

Example: N(u, v) = {A∗∗}, Nw (u, v) = 1 .
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Theorem
(Lindstrom)

∑

π∈Sk

(sgn(π))N(u, π(v)) = det
1≤i ,j≤k

P(ui , vj)

(π(v) is the k-vertex (vπ(1) . . . , vπ(k)))
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∑

π∈Sk

(sgn(π))N(u, π(v)) = det
1≤i ,j≤k

P(ui , vj)

Example
N(u, π(v))=1 when π = (123) ⇒ LHS=1.

RHS =

∣∣∣∣∣∣

P(u1, v1) P(u1, v2) P(u1, v3)
P(u2, v1) P(u2, v2) P(u2, v3)
P(u3, v1) P(u3, v2) P(u3, v3)

∣∣∣∣∣∣
=

∣∣∣∣∣∣

1 1 1
1 2 2
∅ ∅ 1

∣∣∣∣∣∣
= 1
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Proof (sketch)

Key: nondisjoint k-paths will be ‘cancelled out’ through sgn(π).

Assertion:

(1)
∑

π∈Sk

(sgn(π))N(u, π(v)) =
∑

π∈Sk

(sgn(π))P(u, π(v))

Consider a nondisjoint k-path:
A∗ :

Sophie Burrill Plane partitions and tilings
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Proof continued

Create new paths at first point of intersection:
B∗ :

A∗ ∈ P(u, (123)v), sgn(123) = 1;
B∗ ∈ P(u, (213)v), sgn(213) = −1.
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This canceling reduces to give:
Assertion:

(1)
∑

π∈Sk

(sgn(π))N(u, π(v)) =
∑

π∈Sk

(sgn(π))P(u, π(v))

And RHS of (1) reduces to give original determinant.
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Applicability?

Can be used for non intersecting lattice paths on rhombus tilings
of hexagons: all steps are (1, 1) and (1,−1) with edges having left
to right orientation:
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! If a = c : this is the number of such free Dyck paths between
(0, 0) and (0, 2a),

(2m
m

)
.

! Else, rotate again:

Starting vertices: u = (−1, 1), (−2, 2), . . . , (−b, b)
Ending vertices: v = (−1 + a, 1 + c), . . . , (−b + a, b + c).
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In general:

we are considering paths from (−i , i) to (−i + a,−i + c).
When i = 0, the number of such paths from (0, 0) to (a, c) is

(a+c
c

)
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Number non intersecting paths from side b to side b:

det
1≤i ,j≤b

((
a + c

a− i + j

))
.
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Where are we?

! This completes our goal of counting the number of non
intersecting paths in a rhombus tiling of a hexagon of size
a× b × c .

! If does not count the number of PPs of size n inside a box
with sides a× b × c .
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Introduction
The 6 vertex model

Questions
Non intersecting lattice paths

Symmetries of plane partitions
Determinant evaluation

Preliminaries
Lindstrom’s Theorem
Proof
Lindstrom’s theorem: applicability?
Size of plane partition

Count number PPs in hexagon according to size n of PP?
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Proof
Lindstrom’s theorem: applicability?
Size of plane partition

Map: (1, 1)→ (1, 0); (1,−1)→ (0, 1).

These are the first two paths in the example above.
We wish to count the are highlighted in pink.
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Introduction
The 6 vertex model

Questions
Non intersecting lattice paths

Symmetries of plane partitions
Determinant evaluation

Preliminaries
Lindstrom’s Theorem
Proof
Lindstrom’s theorem: applicability?
Size of plane partition

Goal: Count the number of b non intersecting paths from (0, b) to
(a, b − c) according to the area between the paths.
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The 6 vertex model

Questions
Non intersecting lattice paths

Symmetries of plane partitions
Determinant evaluation

Preliminaries
Lindstrom’s Theorem
Proof
Lindstrom’s theorem: applicability?
Size of plane partition

GF (paths(0,m)→ (n, 0); qarea) =

[
m + n

n

]

q

=
1− q)(1− q2) . . . (1− qm+n)

(1− q) . . . (1− qn)(1− q) . . . (1− qm)
.
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Introduction
The 6 vertex model

Questions
Non intersecting lattice paths

Symmetries of plane partitions
Determinant evaluation

Preliminaries
Lindstrom’s Theorem
Proof
Lindstrom’s theorem: applicability?
Size of plane partition

[qn]F (q):= no. plane partitions of size n in a hexagon of size
a× b × c .

F (q) = det
1≤i ,j≤b

(
qj(j−1)

[
a + c

a− i + j

]

q

)

(Case 1: unrestricted)
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The 6 vertex model

Questions
Non intersecting lattice paths

Symmetries of plane partitions
Determinant evaluation

Preliminaries
Lindstrom’s Theorem
Proof
Lindstrom’s theorem: applicability?
Size of plane partition

For small n this is can be manageable, but extra determinant
evaluation techniques such as condensation or LU factorization
should be employed.
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Non intersecting lattice paths

Symmetries of plane partitions
Determinant evaluation

Symmetric
Cyclic symmetric
Complementary symmetric
Summary

Symmetric PPs: invariant under reflection in vertical axis

Counted by:

det
1≤i ,j≤n

((
2m + 1

m − i + j

)
+

(
2m + 1

m − i − j + 1

))
.

(Case 2)
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Questions
Non intersecting lattice paths

Symmetries of plane partitions
Determinant evaluation

Symmetric
Cyclic symmetric
Complementary symmetric
Summary

Cyclic symmetric PPs: invariant under rotation of 120
degrees

Counted by:

det
0≤i ,j ,≤n−1

(
δi ,j +

(
i + j

i

))

δi ,j : sum of the principle minors. (Case 3)
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Cyclic symmetric PPs: invariant under rotation of 120
degrees

Counted by:

det
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(
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δi ,j : sum of the principle minors. (Case 3)
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The 6 vertex model

Questions
Non intersecting lattice paths

Symmetries of plane partitions
Determinant evaluation

Symmetric
Cyclic symmetric
Complementary symmetric
Summary

Self complementary PPs: invariant under rotation by 180
degrees

Rotate by 180 degrees:

Symmetric functions are used in enumeration.
(Case 5)
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Symmetries of plane partitions
Determinant evaluation

Symmetric
Cyclic symmetric
Complementary symmetric
Summary

Transpose complementary PPs: the complement is equal
to the mirror image

Reflect in horizontal axis:

Counted by:
det

0≤i ,j≤n−1
(Ci+j+a)

Where Ci is the i th Catalan number.
(Case 6)
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Counted by:
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Questions
Non intersecting lattice paths

Symmetries of plane partitions
Determinant evaluation

Symmetric
Cyclic symmetric
Complementary symmetric
Summary

Case S. CS SC. TC Name
1 no restriction
2 x SPP
3 x CSPP
4 x x TSPP(*)
5 x SCPP
6 x TCPP
7 x x SSCPP
8 x x CSTCPP
9 x x CSSCPP
10 x x x TSSCPP

(*)-‘almost proof’
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Symmetric
Cyclic symmetric
Complementary symmetric
Summary

A Theorem

Theorem: The number of TSSCPP os size 2n × 2n × 2n = the
number of ASMs of size n × n (Zeilberger, then Kuperberg)
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Symmetric
Cyclic symmetric
Complementary symmetric
Summary

A Conjecture

Conjecture: There exists a simple, natural bijection between
ASMs and TSSCPPs.
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Summary

Thank you!
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Symmetric
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Summary

Ma
b =





a
∗ ∗ | ∗ ∗
∗ ∗ | ∗ ∗
∗ ∗ | ∗ ∗

b −− −− | −− −−
∗ ∗ | ∗ ∗
∗ ∗ | ∗ ∗





det M =
det M1

1 det Mn
n − det M1

n det Mn
1

det M1,n
1,n
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Symmetric
Cyclic symmetric
Complementary symmetric
Summary

! A =
(( a+c

a−i+j

))

1≤i ,j≤b

! det A1
1 = det2≤i ,j≤n

(( a+c
a−i+j

))
= det1≤i ,j≤n−1

(( a+c
a−i+j

))
= An

n

! det An
1 = A1

n = det2≤i ,≤n,1≤j≤n

(( a+c
a−i+j

))
=

det1≤i ,≤n−1

(( a+c
a−1−i+j

))

! det A = det1≤i ,j≤b

(( a+c
a−i+j

))
=

∏a
i=1

∏b
j=1

∏c
k=1

i+j+k−1
i+j+k−2

(MacMahon’s theorem)
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LU factorization

! A =
(( a+c

a−i+j

))

1≤i ,j≤b
.

Solve through L.U factorization?

! Try for small n = {1, 2, 3, 4, . . .} to solve M(n).U(n) = L(n)

! Guess! Easy?
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! Identification of factors

! Guessing (computer)
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Next step?

Employ symmetric functions!
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