Plane partitions and tilings

Integrable Models

Sophie Burrill

February 23, 2011

Introduction
The 6 vertex model
Questions

Partition	Plane partition
13	28
- -	4332
-	3321
- - -	2111
- -	11

Introduction

Introduction

$$
\begin{array}{llll}
4 & 3 & 3 & 2 \\
3 & 3 & 2 & 1 \\
2 & 1 & 1 & 1 \\
1 & 1 & &
\end{array}
$$

Introduction

- Plane partitions are another integrable model.
- Can be identified with (a special case of) the 6 vertex model.
- Plane partitions=rhombus tilings of a hexagon.

Plane partitions $\rightarrow 6$ vertex model?

There are three types of blocks/tiles:

Plane partitions $\rightarrow 6$ vertex model?

Any row in a plane partition is of the form:

which is ... ccca a b...

Plane partitions $\rightarrow 6$ vertex model?

a

Any row in a plane partition is of the form:

which is ... c c c a a b...
A plane partition configuration is entirely determined by the presence of horizontal lines.

Plane partitions $\rightarrow 6$ vertex model?

Recall the 6 vertex model:

a_{1}

a_{2}

b_{1}

b_{2}

c_{1}

c_{2}

Plane partitions $\rightarrow 6$ vertex model?

Recall the 6 vertex model:

b

a_{2}

c

b_{1}

0
0

b_{2}

a

Plane partitions $\rightarrow 6$ vertex model?

- We see that this is actually a five vertex model.

Plane partitions $\rightarrow 6$ vertex model?

- We see that this is actually a five vertex model.
- We cannot go from here to Alternating Sign Matrices, as there are different numbers of tiles in different rows.

Plane partitions $\rightarrow 6$ vertex model?

- We see that this is actually a five vertex model.
- We cannot go from here to Alternating Sign Matrices, as there are different numbers of tiles in different rows.
- However, there are subclasses of plane partitions, one of which is conjectured to be in bijection with ASMs.

Plane partitions \rightarrow tilings

$$
\begin{array}{llll}
4 & 3 & 3 & 2 \\
3 & 3 & 2 & 1 \\
2 & 1 & 1 & 1 \\
1 & 1 & &
\end{array}
$$

Introduction
The 6 vertex model
Questions
Non intersecting lattice paths
Symmetries of plane partitions
Determinant evaluation

Plane partitions \rightarrow tilings

4	3	3	2
3	3	2	1
2	1	1	1
1	1		

1. What are the number of tilings in a given hexagon?

1. What are the number of tilings in a given hexagon?

- We could not make use of the connection to the 6 vertex model, what other strategies will this new interpretation give?

1. What are the number of tilings in a given hexagon?

- We could not make use of the connection to the 6 vertex model, what other strategies will this new interpretation give?

2. Can we enumerate (and define!) 'symmetric' hexagons?

Answer 1:

Theorem
(MacMahon) The number of rhombus tilings of a hexagon with sides a, b, c, a, b, c is

$$
\prod_{i=1}^{a} \prod_{j=1}^{b} \prod_{k=1}^{c} \frac{i+j+k-1}{i+j+k-2}
$$

Answer 2:

- 10 subcases of plane partitions;

Answer 2:

- 10 subcases of plane partitions;
- 9 cases have symmetries;

Answer 2:

- 10 subcases of plane partitions;
- 9 cases have symmetries;
- 8 of these have been enumerated;

Answer 2:

- 10 subcases of plane partitions;
- 9 cases have symmetries;
- 8 of these have been enumerated;
- 1 case has an 'almost proof';

Preliminaries

First, formalize the 'straightening' that occurred between the plane partition and hexagon.

Non intersecting lattice paths

Consider the natural mapping between rhombus tilings of hexagons and non intersecting lattice paths

There are 4 paths from the bottom to the top of this hexagon through tiles of shape α and β.

Non intersecting lattice paths

These non intersecting lattice paths completely determine the tiling of the hexagon of shape $a \times b \times c$!

Goal: Count the number of non intersecting paths on a hexagon of shape $a \times b \times c$.

Introduction
The 6 vertex model Questions
Non intersecting lattice paths Symmetries of plane partitions

Determinant evaluation

Preliminaries

Lindstrom's Theorem
Proof
Lindstrom's theorem: applicability?
Size of plane partition

Non intersecting lattice paths

Steps $(1,1)$ and $(1,-1)$.

Non intersecting lattice paths

Here: how many ways to draw 4 non intersecting paths from $(0,1),(0,2),(0,3),(0,4)$ to $(8,1),(8,2),(8,3),(8,4)$?

Non intersecting lattice paths

Here: how many ways to draw 4 non intersecting paths from
$(0,1),(0,2),(0,3),(0,4)$ to $(8,1),(8,2),(8,3),(8,4)$?
General: How many ways of drawing b paths from
$(0,1), \ldots,(0, b)$ to $(a+c, 1), \ldots,(a+c, b) ?$

- Use the Lindstrom, Gessel-Viennot theorem that gives a method for finding non intersecting paths between two sets of vertices in a digraph through a determinant of all paths between two sets of vertices.

Introduction
The 6 vertex model Questions Non intersecting lattice paths Symmetries of plane partitions Determinant evaluation

- D acyclic digraph

Sophie Burrill Plane partitions and tilings

- D acyclic digraph
- k-vertex is k tuple of vertices;

Sophie Burrill Plane partitions and tilings

- D acyclic digraph
- k-vertex is k tuple of vertices;
- $\mathbf{u}=\left(u_{1}, \ldots, u_{k}\right), \mathbf{v}=\left(v_{1}, \ldots, v_{k}\right) k$-vertices

Introduction
The 6 vertex model Questions Non intersecting lattice paths Symmetries of plane partitions Determinant evaluation

- k-path $\mathbf{A}=\left(A_{1}, A_{2}, \ldots, A_{k}\right)$ (where A_{i} is a path from u_{i} to v_{i})
- k-path $\mathbf{A}=\left(A_{1}, A_{2}, \ldots, A_{k}\right)$ (where A_{i} is a path from u_{i} to v_{i})

$$
\mathbf{A}^{*}:=(\{u 1,1,2, v 1\},\{u 2,1,4, v 2\},\{u 3,5, v 3\})
$$

Introduction

- k-path $\mathbf{A}=\left(A_{1}, A_{2}, \ldots, A_{k}\right)$
- k-path $\mathbf{A}=\left(A_{1}, A_{2}, \ldots, A_{k}\right)$

$\mathbf{A}^{* *}=(\{u 1,1,2, v 1\},\{u 2,3,4, v 2\},\{u 3,5, v 3\})$
- k-path $\mathbf{A}=\left(A_{1}, A_{2}, \ldots, A_{k}\right)$

$$
\mathbf{A}^{* *}=(\{u 1,1,2, v 1\},\{u 2,3,4, v 2\},\{u 3,5, v 3\})
$$

$\mathbf{A}^{* *}$ is disjoint (non intersecting).

- Give weight to every edge;

For simplicity, in this example each edge gets weight 1 .

- Give weight to every edge;
- Path weight:=product of edge weights;

For simplicity, in this example each edge gets weight 1 .

- Give weight to every edge;
- Path weight:=product of edge weights;
- k-path weight:=product of path weights

For simplicity, in this example each edge gets weight 1.

Introduction
$P\left(u_{i}, v_{j}\right):=$ the set of paths from u_{i} to v_{j}
 $P_{w}\left(u_{i}, v_{j}\right):=$ sum of their weights.
$P\left(u_{i}, v_{j}\right):=$ the set of paths from u_{i} to v_{j}
 $P_{w}\left(u_{i}, v_{j}\right):=$ sum of their weights.
$\left.\begin{array}{|l|l|l||l|l|l|}\hline i, j & P\left(u_{i}, v_{j}\right) & P_{w}\left(u_{i}, v_{j}\right) & i, j & P\left(u_{i}, v_{j}\right) & P_{w}\left(u_{i}, v_{j}\right) \\ \hline \hline 1,1 & \{u 1,1,2, v 1\} & 1 & 2,3 & \begin{array}{l}\{u 2,1,4, v 3\}, \\ \{u 2,3,4, v 3\}\end{array} & 2 \\ \hline 1,2 & \{u 1,1,4, v 2\} & 1 & 3,1 & \emptyset & 0 \\ \hline 1,3 & \{u 1,1,4, v 3\} & 1 & 3,2 & \emptyset & 0 \\ \hline 2,1 & \{u 2,1,2, v 1\} & 1 & 3,3 & \{u 3,5, v 3\} & 1 \\ \hline 2,2 & \{u 2,1,4, v 2\}, & 2 & & & \\ & \{u 2,3,4, v 2\}\end{array}\right)$

- $P(\mathbf{u}, \mathbf{v}):=$ the set of k-paths from \mathbf{u} to \mathbf{v};
- $P_{w}(\mathbf{u}, \mathbf{v}):=$ sum of their weights.
- $P(\mathbf{u}, \mathbf{v}):=$ the set of k-paths from \mathbf{u} to \mathbf{v};
- $P_{w}(\mathbf{u}, \mathbf{v}):=$ sum of their weights.

- $P(\mathbf{u}, \mathbf{v}):=$ the set of k-paths from \mathbf{u} to \mathbf{v};
- $P_{w}(\mathbf{u}, \mathbf{v}):=$ sum of their weights.

Example: $P(\mathbf{u}, \mathbf{v})=\left\{\mathbf{A}^{*}, \mathbf{A}^{* *}\right\}$,

- $P(\mathbf{u}, \mathbf{v}):=$ the set of k-paths from \mathbf{u} to \mathbf{v};
- $P_{w}(\mathbf{u}, \mathbf{v}):=$ sum of their weights.

Example: $P(\mathbf{u}, \mathbf{v})=\left\{\mathbf{A}^{*}, \mathbf{A}^{* *}\right\}, P_{w}(\mathbf{u}, \mathbf{v})=2$.

- $N(\mathbf{u}, \mathbf{v}):=$ subset of $P(\mathbf{u}, \mathbf{v})$, disjoint paths ;
- $N_{w}(\mathbf{u}, \mathbf{v}):=$ sum of their weights.
- $N(\mathbf{u}, \mathbf{v}):=$ subset of $P(\mathbf{u}, \mathbf{v})$, disjoint paths ;
- $N_{w}(\mathbf{u}, \mathbf{v}):=$ sum of their weights.

- $N(\mathbf{u}, \mathbf{v}):=$ subset of $P(\mathbf{u}, \mathbf{v})$, disjoint paths ;
- $N_{w}(\mathbf{u}, \mathbf{v}):=$ sum of their weights.

Example: $N(\mathbf{u}, \mathbf{v})=\left\{\mathbf{A}^{* *}\right\}$,

- $N(\mathbf{u}, \mathbf{v}):=$ subset of $P(\mathbf{u}, \mathbf{v})$, disjoint paths ;
- $N_{w}(\mathbf{u}, \mathbf{v}):=$ sum of their weights.

Example: $N(\mathbf{u}, \mathbf{v})=\left\{\mathbf{A}^{* *}\right\}, N_{w}(\mathbf{u}, \mathbf{v})=1$.

Theorem

(Lindstrom)

$$
\sum_{\pi \in S_{k}}(\operatorname{sgn}(\pi)) N(\mathbf{u}, \pi(\mathbf{v}))=\operatorname{det}_{1 \leq i, j \leq k} P\left(u_{i}, v_{j}\right)
$$

$\left(\pi(\mathbf{v})\right.$ is the k-vertex $\left.\left(v_{\pi(1)} \ldots, v_{\pi(k)}\right)\right)$

$$
\sum_{\pi \in S_{k}}(\operatorname{sgn}(\pi)) N(\mathbf{u}, \pi(\mathbf{v}))=\operatorname{det}_{1 \leq i, j \leq k} P\left(u_{i}, v_{j}\right)
$$

Example

$N(\mathbf{u}, \pi(\mathbf{v}))=1$ when $\pi=(123) \Rightarrow \mathrm{LHS}=1$.

$$
R H S=\left|\begin{array}{lll}
P\left(u_{1}, v_{1}\right) & P\left(u_{1}, v_{2}\right) & P\left(u_{1}, v_{3}\right) \\
P\left(u_{2}, v_{1}\right) & P\left(u_{2}, v_{2}\right) & P\left(u_{2}, v_{3}\right) \\
P\left(u_{3}, v_{1}\right) & P\left(u_{3}, v_{2}\right) & P\left(u_{3}, v_{3}\right)
\end{array}\right|=\left|\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 2 \\
\emptyset & \emptyset & 1
\end{array}\right|=1
$$

Introduction

Proof (sketch)

Key: nondisjoint k-paths will be 'cancelled out' through $\operatorname{sgn}(\pi)$.

Proof (sketch)

Key: nondisjoint k-paths will be 'cancelled out' through $\operatorname{sgn}(\pi)$. Assertion:
(1)

$$
\sum_{\pi \in S_{k}}(\operatorname{sgn}(\pi)) N(\mathbf{u}, \pi(\mathbf{v}))=\sum_{\pi \in S_{k}}(\operatorname{sgn}(\pi)) P(\mathbf{u}, \pi(\mathbf{v}))
$$

Proof (sketch)

Key: nondisjoint k-paths will be 'cancelled out' through $\operatorname{sgn}(\pi)$. Assertion:
(1)

$$
\sum_{\pi \in S_{k}}(\operatorname{sgn}(\pi)) N(\mathbf{u}, \pi(\mathbf{v}))=\sum_{\pi \in S_{k}}(\operatorname{sgn}(\pi)) P(\mathbf{u}, \pi(\mathbf{v}))
$$

Consider a nondisjoint k-path:
A^{*} :

Proof continued

Create new paths at first point of intersection: B^{*} :

$A^{*} \in P(\mathbf{u},(123) \mathbf{v}), \operatorname{sgn}(123)=1$;
$B^{*} \in P(\mathbf{u},(213) \mathbf{v}), \operatorname{sgn}(213)=-1$.

This canceling reduces to give:

Assertion:

$$
\text { (1) } \quad \sum_{\pi \in S_{k}}(\operatorname{sgn}(\pi)) N(\mathbf{u}, \pi(\mathbf{v}))=\sum_{\pi \in S_{k}}(\operatorname{sgn}(\pi)) P(\mathbf{u}, \pi(\mathbf{v}))
$$

And RHS of (1) reduces to give original determinant.

Applicability?

Can be used for non intersecting lattice paths on rhombus tilings of hexagons: all steps are $(1,1)$ and $(1,-1)$ with edges having left to right orientation:

- If $a=c$: this is the number of such free Dyck paths between $(0,0)$ and $(0,2 a),\binom{2 m}{m}$.
- Else, rotate again:

Starting vertices: $\mathbf{u}=(-1,1),(-2,2), \ldots,(-b, b)$
Ending vertices: $\mathbf{v}=(-1+a, 1+c), \ldots,(-b+a, b+c)$.

In general:

we are considering paths from $(-i, i)$ to $(-i+a,-i+c)$.
When $i=0$, the number of such paths from $(0,0)$ to (a, c) is $\binom{a+c}{c}$

Number non intersecting paths from side b to side b :

$$
\operatorname{det}_{1 \leq i, j \leq b}\left(\binom{a+c}{a-i+j}\right) .
$$

Where are we?

- This completes our goal of counting the number of non intersecting paths in a rhombus tiling of a hexagon of size $a \times b \times c$.

Where are we?

- This completes our goal of counting the number of non intersecting paths in a rhombus tiling of a hexagon of size $a \times b \times c$.
- If does not count the number of PPs of size n inside a box with sides $a \times b \times c$.

Count number PPs in hexagon according to size n of PP?

Introduction
The 6 vertex model Questions Non intersecting lattice paths Symmetries of plane partitions Determinant evaluation

Map: $(1,1) \rightarrow(1,0) ;(1,-1) \rightarrow(0,1)$.

Introduction
The 6 vertex model Questions Non intersecting lattice paths Symmetries of plane partitions Determinant evaluation

Map: $(1,1) \rightarrow(1,0) ;(1,-1) \rightarrow(0,1)$.

Map: $(1,1) \rightarrow(1,0) ;(1,-1) \rightarrow(0,1)$.

These are the first two paths in the example above. We wish to count the are highlighted in pink.

Goal: Count the number of b non intersecting paths from $(0, b)$ to $(a, b-c)$ according to the area between the paths.

Introduction
The 6 vertex model Questions Non intersecting lattice paths Symmetries of plane partitions Determinant evaluation

$$
\begin{aligned}
& G F\left(\text { paths }(0, m) \rightarrow(n, 0) ; q^{\text {area }}\right)=\left[\begin{array}{c}
m+n \\
n
\end{array}\right]_{q} \\
& \quad=\frac{1-q)\left(1-q^{2}\right) \ldots\left(1-q^{m+n}\right)}{(1-q) \ldots\left(1-q^{n}\right)(1-q) \ldots\left(1-q^{m}\right)} .
\end{aligned}
$$

$\left[q^{n}\right] F(q):=$ no. plane partitions of size n in a hexagon of size $a \times b \times c$.

$$
F(q)=\operatorname{det}_{1 \leq i, j \leq b}\left(q^{j(j-1)}\left[\begin{array}{c}
a+c \\
a-i+j
\end{array}\right]_{q}\right)
$$

(Case 1: unrestricted)

For small n this is can be manageable, but extra determinant evaluation techniques such as condensation or LU factorization should be employed.

Introduction
The 6 vertex model
Questions
Non intersecting lattice paths
Symmetries of plane partitions
Determinant evaluation

Symmetric

Symmetric PPs: invariant under reflection in vertical axis

Symmetric PPs: invariant under reflection in vertical axis

Counted by:

$$
\operatorname{det}_{1 \leq i, j \leq n}^{\operatorname{det}}\left(\binom{2 m+1}{m-i+j}+\binom{2 m+1}{m-i-j+1}\right) .
$$

(Case 2)

Introduction

Cyclic symmetric PPs: invariant under rotation of 120 degrees

Cyclic symmetric PPs: invariant under rotation of 120 degrees

Counted by:

$$
\operatorname{det}_{0 \leq i, j, \leq n-1}\left(\delta_{i, j}+\binom{i+j}{i}\right)
$$

$\delta_{i, j}$: sum of the principle minors. (Case 3)

Self complementary PPs: invariant under rotation by 180 degrees

Rotate by 180 degrees:

Symmetric functions are used in enumeration.
(Case 5)

Introduction

Transpose complementary PPs: the complement is equal to the mirror image

Reflect in horizontal axis:

Transpose complementary PPs: the complement is equal to the mirror image

Reflect in horizontal axis:

Counted by:

$$
\operatorname{det}_{0 \leq i, j \leq n-1}\left(C_{i+j+a}\right)
$$

Where C_{i} is the $i^{\text {th }}$ Catalan number. (Case 6)

Case	S.	CS	SC.	TC	Name
1					no restriction
2	\times				SPP
3		x			CSPP
4	\times	x			TSPP $(*)$
5			x		SCPP
6				x	TCPP
7	x		x		SSCPP
8		x		x	CSTCPP
9		x	x		CSSCPP
10	x	x	x		TSSCPP

(*)-'almost proof'

```
Symmetric
Cyclic symmetric
Complementary symmetric
Summary
```


A Theorem

Theorem: The number of TSSCPP os size $2 n \times 2 n \times 2 n=$ the number of ASMs of size $n \times n$ (Zeilberger, then Kuperberg)

```
Symmetric
Cyclic symmetric
Complementary symmetric
Summary
```


A Conjecture

Conjecture: There exists a simple, natural bijection between ASMs and TSSCPPs.

Introduction

Thank you!

Introduction

```
Symmetric
Cyclic symmetric
Complementary symmetric
Summary
```


Introduction
The 6 vertex model Questions
Non intersecting lattice paths
Symmetries of plane partitions
Determinant evaluation

Symmetric

Cyclic symmetric
Complementary symmetric
Summary

$$
M_{b}^{a}=\left(\begin{array}{ccc:cc}
& & & a & \\
& * & * & * & * \\
& * & * & * & * \\
& * & * & * & * \\
b & -- & -- & -- & -- \\
& * & * & * & * \\
& * & * & * & *
\end{array}\right)
$$

$$
\operatorname{det} M=\frac{\operatorname{det} M_{1}^{1} \operatorname{det} M_{n}^{n}-\operatorname{det} M_{n}^{1} \operatorname{det} M_{1}^{n}}{\operatorname{det} M_{1, n}^{1, n}}
$$

Introduction

$$
\text { - } A=\left(\binom{a+c}{a-i+j}\right)_{1 \leq i, j \leq b}
$$

- $A=\left(\binom{a+c}{a-i+j}\right)_{1 \leq i, j \leq b}$
- $\operatorname{det} A_{1}^{1}=\operatorname{det}_{2 \leq i, j \leq n}\left(\binom{a+c}{a-i+j}\right)=\operatorname{det}_{1 \leq i, j \leq n-1}\left(\binom{a+c}{a-i+j}\right)=A_{n}^{n}$
- $A=\left(\binom{a+c}{a-i+j}\right)_{1 \leq i, j \leq b}$
- $\operatorname{det} A_{1}^{1}=\operatorname{det}_{2 \leq i, j \leq n}\left(\binom{a+c}{a-i+j}\right)=\operatorname{det}_{1 \leq i, j \leq n-1}\left(\binom{a+c}{a-i+j}\right)=A_{n}^{n}$
- $\operatorname{det} A_{1}^{n}=A_{n}^{1}=\operatorname{det}_{2 \leq i, \leq n, 1 \leq j \leq n}\left(\binom{a+c}{a-i+j}\right)=$ $\operatorname{det}_{1 \leq i, \leq n-1}\left(\binom{a+c}{a-1-i+j}\right)$
- $A=\left(\binom{a+c}{a-i+j}\right)_{1 \leq i, j \leq b}$
- $\operatorname{det} A_{1}^{1}=\operatorname{det}_{2 \leq i, j \leq n}\left(\binom{a+c}{a-i+j}\right)=\operatorname{det}_{1 \leq i, j \leq n-1}\left(\binom{a+c}{a-i+j}\right)=A_{n}^{n}$
- $\operatorname{det} A_{1}^{n}=A_{n}^{1}=\operatorname{det}_{2 \leq i, \leq n, 1 \leq j \leq n}\left(\binom{a+c}{a-i+j}\right)=$
$\operatorname{det}_{1 \leq i, \leq n-1}\left(\binom{a+c}{a-1-i+j}\right)$
- $\operatorname{det} A=\operatorname{det}_{1 \leq i, j \leq b}\left(\binom{a+c}{a-i+j}\right)=\prod_{i=1}^{a} \prod_{j=1}^{b} \prod_{k=1}^{c} \frac{i+j+k-1}{i+j+k-2}$
(MacMahon's theorem)

Introduction

Symmetric

Cyclic symmetric
Complementary symmetric
Summary

LU factorization

- $A=\left(\binom{a+c}{a-i+j}\right)_{1 \leq i, j \leq b}$.

LU factorization

- $A=\left(\binom{a+c}{a-i+j}\right)_{1 \leq i, j \leq b}$. Solve through L.U factorization?

LU factorization

- $A=\left(\binom{a+c}{a-i+j}\right)_{1 \leq i, j \leq b}$. Solve through L.U factorization?
- Try for small $n=\{1,2,3,4, \ldots\}$ to solve $M(n) \cdot U(n)=L(n)$

LU factorization

- $A=\left(\binom{a+c}{a-i+j}\right)_{1 \leq i, j \leq b}$. Solve through L.U factorization?
- Try for small $n=\{1,2,3,4, \ldots\}$ to solve $M(n) \cdot U(n)=L(n)$
- Guess! Easy?
- Identification of factors
- Identification of factors
- Guessing (computer)

Introduction
The 6 vertex model
Questions
Non intersecting lattice paths
Symmetries of plane partitions
Determinant evaluation

```
Symmetric
Cyclic symmetric
Complementary symmetric
Summary

\section*{Next step?}

\section*{Employ symmetric functions!}
```

