Plane partitions and tilings Integrable Models

Sophie Burrill

February 23, 2011

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Introduction

The 6 vertex model Questions Non intersecting lattice paths Symmetries of plane partitions Determinant evaluation

Partition	Plane partition
13	28
	4 3 3 2
• • •	3321
• • •	2 1 1 1
••	1 1

★ロ→ ★御→ ★注→ ★注→ 「注

Introduction

The 6 vertex model Questions Non intersecting lattice paths Symmetries of plane partitions Determinant evaluation

Introduction

Introduction

The 6 vertex model Questions Non intersecting lattice paths Symmetries of plane partitions Determinant evaluation

Introduction

- Plane partitions are another integrable model.
- Can be identified with (a special case of) the 6 vertex model.
- Plane partitions=rhombus tilings of a hexagon.

Plane partitions \rightarrow 6 vertex model?

There are three types of blocks/tiles:

・ロン ・回 と ・ ヨ と ・ ヨ と

Plane partitions \rightarrow 6 vertex model?

which is ... c c c a a b ...

Plane partitions \rightarrow 6 vertex model?

which is ... c c c a a b ...

A plane partition configuration is entirely determined by the presence of horizontal lines.

Plane partitions \rightarrow 6 vertex model?

Recall the 6 vertex model:

・ロト ・回 ト ・ヨト ・ヨトー

Plane partitions \rightarrow 6 vertex model?

a b c Recall the 6 vertex model:

Plane partitions \rightarrow 6 vertex model?

• We see that this is actually a **five** vertex model.

・ロト ・回ト ・ヨト ・ヨト

Plane partitions \rightarrow 6 vertex model?

- We see that this is actually a five vertex model.
- We cannot go from here to Alternating Sign Matrices, as there are different numbers of tiles in different rows.

Plane partitions \rightarrow 6 vertex model?

- We see that this is actually a five vertex model.
- We cannot go from here to Alternating Sign Matrices, as there are different numbers of tiles in different rows.
- However, there are subclasses of plane partitions, one of which is conjectured to be in bijection with ASMs.

Plane partitions \rightarrow tilings

イロン イヨン イヨン イヨン

Plane partitions \rightarrow tilings

イロン イヨン イヨン イヨン

1. What are the number of tilings in a given hexagon?

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

- 1. What are the number of tilings in a given hexagon?
 - We could not make use of the connection to the 6 vertex model, what other strategies will this new interpretation give?

- 1. What are the number of tilings in a given hexagon?
 - We could not make use of the connection to the 6 vertex model, what other strategies will this new interpretation give?
- 2. Can we enumerate (and define!) 'symmetric' hexagons?

Answer 1:

Theorem

(MacMahon) The number of rhombus tilings of a hexagon with sides a, b, c, a, b, c is

$$\prod_{i=1}^{a} \prod_{j=1}^{b} \prod_{k=1}^{c} \frac{i+j+k-1}{i+j+k-2}$$

・ロト ・回ト ・ヨト ・ヨト

Answer 2:

▶ 10 subcases of plane partitions;

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Answer 2:

- 10 subcases of plane partitions;
- 9 cases have symmetries;

・ロト ・回ト ・ヨト ・ヨト

Answer 2:

- 10 subcases of plane partitions;
- 9 cases have symmetries;
- 8 of these have been enumerated;

Answer 2:

- 10 subcases of plane partitions;
- 9 cases have symmetries;
- 8 of these have been enumerated;
- 1 case has an 'almost proof';

Preliminaries Lindstrom's Theorem Proof Lindstrom's theorem: applicability? Size of plane partition

Preliminaries

First, formalize the 'straightening' that occurred between the plane partition and hexagon.

 $\mathbb{Z}_{(\alpha)}$ $\mathbb{Z}_{(\beta)}$ \Leftrightarrow \Leftrightarrow \Leftrightarrow

・ロト ・回ト ・ヨト ・ヨト

Preliminaries Lindstrom's Theorem Proof Lindstrom's theorem: applicability? Size of plane partition

Non intersecting lattice paths

Consider the natural mapping between rhombus tilings of hexagons and non intersecting lattice paths

There are 4 paths from the bottom to the top of this hexagon through tiles of shape α and β .

イロト イポト イラト イラト

Preliminaries Lindstrom's Theorem Proof Lindstrom's theorem: applicability? Size of plane partition

Non intersecting lattice paths

These non intersecting lattice paths **completely determine** the tiling of the hexagon of shape $a \times b \times c!$

・ロト ・回ト ・ヨト

Preliminaries Lindstrom's Theorem Proof Lindstrom's theorem: applicability? Size of plane partition

Goal: Count the number of non intersecting paths on a hexagon of shape $a \times b \times c$.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Preliminaries Lindstrom's Theorem Proof Lindstrom's theorem: applicability? Size of plane partition

Non intersecting lattice paths

・ロト ・回ト ・ヨト ・ヨト

Preliminaries Lindstrom's Theorem Proof Lindstrom's theorem: applicability? Size of plane partition

Non intersecting lattice paths

Here: how many ways to draw 4 non intersecting paths from (0,1), (0,2), (0,3), (0,4) to (8,1), (8,2), (8,3), (8,4)?

・ロト ・回ト ・ヨト ・ヨト

Preliminaries Lindstrom's Theorem Proof Lindstrom's theorem: applicability? Size of plane partition

Non intersecting lattice paths

Here: how many ways to draw 4 non intersecting paths from (0,1), (0,2), (0,3), (0,4) to (8,1), (8,2), (8,3), (8,4)? General: How many ways of drawing *b* paths from $(0,1), \ldots, (0,b)$ to $(a+c,1), \ldots, (a+c,b)$?

Preliminaries Lindstrom's Theorem Proof Lindstrom's theorem: applicability? Size of plane partition

Use the Lindstrom, Gessel-Viennot theorem that gives a method for finding non intersecting paths between two sets of vertices in a digraph through a determinant of all paths between two sets of vertices.

・ロト ・回ト ・ヨト

Preliminaries Lindstrom's Theorem Proof Lindstrom's theorem: applicability? Size of plane partition

D acyclic digraph

・ロト ・回 ト ・ヨト ・ヨト

Preliminaries Lindstrom's Theorem Proof Lindstrom's theorem: applicability? Size of plane partition

- D acyclic digraph
- k-vertex is k tuple of vertices;

・ロト ・回ト ・ヨト ・ヨト

Preliminaries Lindstrom's Theorem Proof Lindstrom's theorem: applicability? Size of plane partition

- D acyclic digraph
- k-vertex is k tuple of vertices;

▶
$$\mathbf{u} = (u_1, \ldots, u_k), \mathbf{v} = (v_1, \ldots, v_k)$$
 k-vertices

・ロト ・回ト ・ヨト ・ヨト

Introduction The 6 vertex model Questions Non intersecting lattice paths Symmetries of plane partitions Determinant evaluation Proof Lindstrom's Theorem Proof Lindstrom's Theorem: Size of plane partition

• k-path
$$\mathbf{A} = (A_1, A_2, \dots, A_k)$$
 (where A_i is a path from u_i to v_i)

Introduction The 6 vertex model Questions Non intersecting lattice paths Symmetries of plane partitions Determinant evaluation Proof Lindstrom's Theorem Proof Lindstrom's theorem: applicability? Size of plane partition

• k-path
$$\mathbf{A} = (A_1, A_2, \dots, A_k)$$
 (where A_i is a path from u_i to v_i)

 $\mathbf{A}^* := \big(\{u1, 1, 2, v1\}, \{u2, 1, 4, v2\}, \{u3, 5, v3\}\big)$

・ロン ・回 と ・ヨン ・ヨン

Preliminaries Lindstrom's Theorem Proof Lindstrom's theorem: applicability? Size of plane partition

• k-path $\mathbf{A} = (A_1, A_2, \dots, A_k)$

・ロン ・回 と ・ヨン ・ヨン

Preliminaries Lindstrom's Theorem Proof Lindstrom's theorem: applicability? Size of plane partition

• *k*-path
$$\mathbf{A} = (A_1, A_2, \dots, A_k)$$

$$\mathbf{A}^{**} = (\{u1, 1, 2, v1\}, \{u2, 3, 4, v2\}, \{u3, 5, v3\})$$

イロン イヨン イヨン イヨン

Э

Preliminaries Lindstrom's Theorem Proof Lindstrom's theorem: applicability? Size of plane partition

• *k*-path
$$\mathbf{A} = (A_1, A_2, \dots, A_k)$$

$$\mathbf{A}^{**} = (\{u1, 1, 2, v1\}, \{u2, 3, 4, v2\}, \{u3, 5, v3\})$$

A^{**} is *disjoint* (non intersecting).

・ロト ・回ト ・ヨト ・ヨト

æ

Preliminaries Lindstrom's Theorem Proof Lindstrom's theorem: applicability? Size of plane partition

Give weight to every edge;

For simplicity, in this example each edge gets weight 1.

Preliminaries Lindstrom's Theorem Proof Lindstrom's theorem: applicability? Size of plane partition

- Give weight to every edge;
- Path weight:=product of edge weights;

For simplicity, in this example each edge gets weight 1.

Preliminaries Lindstrom's Theorem Proof Lindstrom's theorem: applicability? Size of plane partition

- Give weight to every edge;
- Path weight:=product of edge weights;
- k-path weight:=product of path weights

For simplicity, in this example each edge gets weight 1.

Preliminaries Lindstrom's Theorem Proof Lindstrom's theorem: applicability? Size of plane partition

イロト イヨト イヨト イヨト

 $P(u_i, v_j)$:=the set of paths from u_i to v_j $P_w(u_i, v_j)$:= sum of their weights.

Preliminaries Lindstrom's Theorem Proof Lindstrom's theorem: applicability? Size of plane partition

イロト イヨト イヨト イヨト

 $P(u_i, v_j)$:=the set of paths from u_i to v_j $P_w(u_i, v_j)$:= sum of their weights.

i,j	$P(u_i, v_j)$	$P_w(u_i, v_j)$	i,j	$P(u_i, v_j)$	$P_w(u_i, v_j)$
1,1	${u1, 1, 2, v1}$	1	2,3	$\{u2, 1, 4, v3\},\$	2
				$\{u2, 3, 4, v3\}$	
1,2	${u1, 1, 4, v2}$	1	3,1	Ø	0
1,3	${u1, 1, 4, v3}$	1	3,2	Ø	0
2,1	$\{u2, 1, 2, v1\}$	1	3,3	$\{u3, 5, v3\}$	1
2,2	${u2, 1, 4, v2},$	2			
	$\{u2, 3, 4, v2\}$				

Preliminaries Lindstrom's Theorem Proof Lindstrom's theorem: applicability? Size of plane partition

- P(u, v):= the set of k-paths from u to v;
- $P_w(\mathbf{u}, \mathbf{v}) :=$ sum of their weights.

・ロン ・回 と ・ ヨ と ・ ヨ と

Preliminaries Lindstrom's Theorem Proof Lindstrom's theorem: applicability? Size of plane partition

- $P(\mathbf{u}, \mathbf{v})$:= the set of k-paths from **u** to **v**;
- $P_w(\mathbf{u}, \mathbf{v}) :=$ sum of their weights.

・ロト ・回ト ・ヨト ・ヨト

Preliminaries Lindstrom's Theorem Proof Lindstrom's theorem: applicability? Size of plane partition

- P(u, v):= the set of k-paths from u to v;
- $P_w(\mathbf{u}, \mathbf{v}) :=$ sum of their weights.

・ロト ・回ト ・ヨト ・ヨト

Example: $P(u, v) = \{A^*, A^{**}\},\$

Preliminaries Lindstrom's Theorem Proof Lindstrom's theorem: applicability? Size of plane partition

- P(u, v):= the set of k-paths from u to v;
- $P_w(\mathbf{u}, \mathbf{v}) :=$ sum of their weights.

Example: $P(u, v) = \{A^*, A^{**}\}, P_w(u, v) = 2$.

・ロン ・回 と ・ ヨ と ・ ヨ と

Preliminaries Lindstrom's Theorem Proof Lindstrom's theorem: applicability? Size of plane partition

- $N(\mathbf{u}, \mathbf{v})$:= subset of $P(\mathbf{u}, \mathbf{v})$, disjoint paths ;
- $N_w(\mathbf{u}, \mathbf{v})$:=sum of their weights.

・ロン ・回 と ・ ヨ と ・ ヨ と

Preliminaries Lindstrom's Theorem Proof Lindstrom's theorem: applicability? Size of plane partition

- ▶ $N(\mathbf{u}, \mathbf{v})$:= subset of $P(\mathbf{u}, \mathbf{v})$, disjoint paths ;
- $N_w(\mathbf{u}, \mathbf{v})$:=sum of their weights.

・ロト ・回ト ・ヨト ・ヨト

Preliminaries Lindstrom's Theorem Proof Lindstrom's theorem: applicability? Size of plane partition

- ▶ $N(\mathbf{u}, \mathbf{v})$:= subset of $P(\mathbf{u}, \mathbf{v})$, disjoint paths ;
- $N_w(\mathbf{u}, \mathbf{v})$:=sum of their weights.

Example: $N(\mathbf{u}, \mathbf{v}) = {\mathbf{A}^{**}},$

・ロト ・回ト ・ヨト ・ヨト

Preliminaries Lindstrom's Theorem Proof Lindstrom's theorem: applicability? Size of plane partition

- ▶ $N(\mathbf{u}, \mathbf{v})$:= subset of $P(\mathbf{u}, \mathbf{v})$, disjoint paths ;
- $N_w(\mathbf{u}, \mathbf{v})$:=sum of their weights.

Example: $N(\mathbf{u}, \mathbf{v}) = \{\mathbf{A}^{**}\}, N_w(\mathbf{u}, \mathbf{v}) = 1$.

イロン 不同と 不同と 不同と

Preliminaries Lindstrom's Theorem Proof Lindstrom's theorem: applicability? Size of plane partition

Theorem (Lindstrom)

$$\sum_{\pi \in S_k} (sgn(\pi)) N(\mathbf{u}, \pi(\mathbf{v})) = \det_{1 \le i,j \le k} P(u_i, v_j)$$

 $(\pi(\mathbf{v}) \text{ is the } k \text{-vertex } (v_{\pi(1)} \dots, v_{\pi(k)}))$

・ロト ・回ト ・ヨト ・ヨト

Introduction The 6 vertex model Questions Non intersecting lattice paths Symmetries of plane partitions Determinant evaluation Proof Lindstrom's Theorem Proof Lindstrom's Theorem Size of plane partition

$$\sum_{\pi \in S_k} (sgn(\pi)) N(\mathbf{u}, \pi(\mathbf{v})) = \det_{1 \le i,j \le k} P(u_i, v_j)$$

Example $N(\mathbf{u}, \pi(\mathbf{v}))=1$ when $\pi = (123) \Rightarrow LHS=1$.

$$RHS = \begin{vmatrix} P(u_1, v_1) & P(u_1, v_2) & P(u_1, v_3) \\ P(u_2, v_1) & P(u_2, v_2) & P(u_2, v_3) \\ P(u_3, v_1) & P(u_3, v_2) & P(u_3, v_3) \end{vmatrix} = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & 2 \\ \emptyset & \emptyset & 1 \end{vmatrix} = 1$$

イロン イヨン イヨン イヨン

Э

Preliminaries Lindstrom's Theorem Proof Lindstrom's theorem: applicability? Size of plane partition

Proof (sketch)

Key: nondisjoint *k*-paths will be 'cancelled out' through $sgn(\pi)$.

・ロン ・回 と ・ ヨ と ・ ヨ と

Preliminaries Lindstrom's Theorem Proof Lindstrom's theorem: applicability? Size of plane partition

Proof (sketch)

Key: nondisjoint *k*-paths will be 'cancelled out' through $sgn(\pi)$. **Assertion:**

(1)
$$\sum_{\pi \in S_k} (sgn(\pi)) N(\mathbf{u}, \pi(\mathbf{v})) = \sum_{\pi \in S_k} (sgn(\pi)) P(\mathbf{u}, \pi(\mathbf{v}))$$

・ロン ・回 と ・ ヨ と ・ ヨ と

Preliminaries Lindstrom's Theorem Proof Lindstrom's theorem: applicability? Size of plane partition

Proof (sketch)

Key: nondisjoint *k*-paths will be 'cancelled out' through $sgn(\pi)$. **Assertion:**

(1)
$$\sum_{\pi \in S_k} (sgn(\pi)) N(\mathbf{u}, \pi(\mathbf{v})) = \sum_{\pi \in S_k} (sgn(\pi)) P(\mathbf{u}, \pi(\mathbf{v}))$$

Consider a nondisjoint k-path: A^* :

Preliminaries Lindstrom's Theorem Proof Lindstrom's theorem: applicability? Size of plane partition

Proof continued

Create new paths at first point of intersection: B^* :

 $A^* \in P(\mathbf{u}, (123)\mathbf{v}), \ sgn(123) = 1;$ $B^* \in P(\mathbf{u}, (213)\mathbf{v}), \ sgn(213) = -1.$

This canceling reduces to give: **Assertion:**

(1)
$$\sum_{\pi \in S_k} (sgn(\pi))N(\mathbf{u}, \pi(\mathbf{v})) = \sum_{\pi \in S_k} (sgn(\pi))P(\mathbf{u}, \pi(\mathbf{v}))$$

And RHS of (1) reduces to give original determinant.

・ロト ・回ト ・ヨト ・ヨト

Preliminaries Lindstrom's Theorem Proof Lindstrom's theorem: applicability? Size of plane partition

Applicability?

Can be used for non intersecting lattice paths on rhombus tilings of hexagons: all steps are (1,1) and (1,-1) with edges having left to right orientation:

Introduction The 6 vertex model Questions Non intersecting lattice paths Symmetries of plane partitions Determinant evaluation Proof Lindstrom's Theorem Proof Lindstrom's theorem: applicability? Size of plane partition

- ▶ If a = c: this is the number of such free Dyck paths between (0,0) and (0,2*a*), $\binom{2m}{m}$.
- Else, rotate again:

Starting vertices: $\mathbf{u} = (-1, 1), (-2, 2), \dots, (-b, b)$ Ending vertices: $\mathbf{v} = (-1 + a, 1 + c), \dots, (-b + a, b + c).$

Preliminaries Lindstrom's Theorem Proof Lindstrom's theorem: applicability? Size of plane partition

In general:

we are considering paths from (-i, i) to (-i + a, -i + c). When i = 0, the number of such paths from (0, 0) to (a, c) is $\binom{a+c}{c}$

Preliminaries Lindstrom's Theorem Proof Lindstrom's theorem: applicability? Size of plane partition

Number non intersecting paths from side *b* to side *b*:

$$\det_{1\leq i,j\leq b}\left(\binom{a+c}{a-i+j}\right).$$

・ロト ・回ト ・ヨト ・ヨト

Preliminaries Lindstrom's Theorem Proof Lindstrom's theorem: applicability? Size of plane partition

Where are we?

This completes our goal of counting the number of non intersecting paths in a rhombus tiling of a hexagon of size a × b × c.

Preliminaries Lindstrom's Theorem Proof Lindstrom's theorem: applicability? Size of plane partition

Where are we?

- This completes our goal of counting the number of non intersecting paths in a rhombus tiling of a hexagon of size a × b × c.
- ► If does not count the number of PPs of size n inside a box with sides a × b × c.

Preliminaries Lindstrom's Theorem Proof Lindstrom's theorem: applicability? Size of plane partition

Count number PPs in hexagon according to size *n* of PP?

・ロト ・回ト ・ヨト ・ヨト

Preliminaries Lindstrom's Theorem Proof Lindstrom's theorem: applicability? Size of plane partition

$\mathsf{Map:}\ (1,1) \to (1,0);\ (1,-1) \to (0,1).$

イロン イヨン イヨン イヨン

Э

Preliminaries Lindstrom's Theorem Proof Lindstrom's theorem: applicability? Size of plane partition

$\mathsf{Map:}\ (1,1) \to (1,0);\ (1,-1) \to (0,1).$

・ロン ・回 と ・ヨン ・ヨン

Э

Preliminaries Lindstrom's Theorem Proof Lindstrom's theorem: applicability? Size of plane partition

$\mathsf{Map:}\ (1,1) \to (1,0);\ (1,-1) \to (0,1).$

These are the first two paths in the example above. We wish to count the are highlighted in pink.

・ロト ・回ト ・ヨト ・ヨト

Goal: Count the number of *b* non intersecting paths from (0, b) to (a, b - c) according to the area between the paths.

・ロト ・回ト ・ヨト ・ヨト

э

$$egin{aligned} & {\it GF}({\it paths}(0,m)
ightarrow (n,0); q^{{\it area}}) = \left[egin{aligned} m+n \ n \end{array}
ight]_q \ & = rac{1-q)(1-q^2)\ldots(1-q^{m+n})}{(1-q)\ldots(1-q^n)(1-q)\ldots(1-q^m)}. \end{aligned}$$

 $[q^n]F(q)$:= no. plane partitions of size *n* in a hexagon of size $a \times b \times c$.

$$F(q) = \det_{1 \le i,j \le b} \left(q^{j(j-1)} \left[\begin{array}{c} a+c \\ a-i+j \end{array} \right]_q \right)$$

(Case 1: unrestricted)

・ロン ・回 と ・ヨン ・ヨン

Preliminaries Lindstrom's Theorem Proof Lindstrom's theorem: applicability? Size of plane partition

For small n this is can be manageable, but extra determinant evaluation techniques such as *condensation* or *LU factorization* should be employed.

イロト イヨト イヨト イヨト

Symmetric Cyclic symmetric Complementary symmetric Summary

Symmetric PPs: invariant under reflection in vertical axis

・ロン ・聞と ・ほと ・ほと

Symmetric Cyclic symmetric Complementary symmetric Summary

Symmetric PPs: invariant under reflection in vertical axis

Counted by:

$$\det_{1\leq i,j\leq n}\left(\binom{2m+1}{m-i+j}+\binom{2m+1}{m-i-j+1}\right).$$

(Case 2)

イロン 不同と 不同と 不同と

Symmetric Cyclic symmetric Complementary symmetric Summary

Cyclic symmetric PPs: invariant under rotation of 120 degrees

・ロト ・回ト ・ヨト ・ヨト

Symmetric Cyclic symmetric Complementary symmetric Summary

Cyclic symmetric PPs: invariant under rotation of 120 degrees

Counted by:

$$\det_{0 \le i,j, \le n-1} \left(\delta_{i,j} + \binom{i+j}{i} \right)$$

 $\delta_{i,j}$: sum of the principle minors. (Case 3)

イロト イポト イヨト イヨト

Symmetric Cyclic symmetric Complementary symmetric Summary

Self complementary PPs: invariant under rotation by 180 degrees

Rotate by 180 degrees:

Symmetric functions are used in enumeration. (Case 5)

Symmetric Cyclic symmetric Complementary symmetric Summary

Transpose complementary PPs: the complement is equal to the mirror image

Reflect in horizontal axis:

() < </p>

Symmetric Cyclic symmetric Complementary symmetric Summary

Transpose complementary PPs: the complement is equal to the mirror image

Reflect in horizontal axis:

Counted by:

 $\det_{0 \le i,j \le n-1}(C_{i+j+a})$

Where C_i is the i^{th} Catalan number. (Case 6)

Symmetric Cyclic symmetric Complementary symmetric Summary

Case	S.	CS	SC.	ТС	Name
1					no restriction
2	x				SPP
3		x			CSPP
4	x	x			TSPP(*)
5			x		SCPP
6				х	ТСРР
7	x		x		SSCPP
8		x		х	CSTCPP
9		x	x		CSSCPP
10	x	х	x		TSSCPP

(*)-'almost proof'

・ロト ・回ト ・ヨト ・ヨト

Symmetric Cyclic symmetric Complementary symmetric Summary

A Theorem

Theorem: The number of TSSCPP os size $2n \times 2n \times 2n =$ the number of ASMs of size $n \times n$ (Zeilberger, then Kuperberg)

Sophie Burrill Plane partitions and tilings

イロト イヨト イヨト イヨト

Symmetric Cyclic symmetric Complementary symmetric Summary

A Conjecture

Conjecture: There exists a simple, natural bijection between ASMs and TSSCPPs.

Sophie Burrill Plane partitions and tilings

・ロト ・回ト ・ヨト ・ヨト

Symmetric Cyclic symmetric Complementary symmetric Summary

Thank you!

Sophie Burrill Plane partitions and tilings

・ロン ・回 と ・ ヨ ・ ・ ヨ ・ ・

æ

Symmetric Cyclic symmetric Complementary symmetric Summary

Symmetric Cyclic symmetric Complementary symmetric Summary

$$\det M = \frac{\det M_1^1 \det M_n^n - \det M_n^1 \det M_1^n}{\det M_{1,n}^{1,n}}$$

Symmetric Cyclic symmetric Complementary symmetric Summary

$$\blacktriangleright A = \left(\binom{a+c}{a-i+j} \right)_{1 \le i,j \le b}$$

Symmetric Cyclic symmetric Complementary symmetric Summary

►
$$A = \left(\begin{pmatrix} a+c \\ a-i+j \end{pmatrix} \right)_{1 \le i,j \le b}$$

► $\det A_1^1 = \det_{2 \le i,j \le n} \left(\begin{pmatrix} a+c \\ a-i+j \end{pmatrix} \right) = \det_{1 \le i,j \le n-1} \left(\begin{pmatrix} a+c \\ a-i+j \end{pmatrix} \right) = A_n^n$

Symmetric Cyclic symmetric Complementary symmetric Summary

$$A = \left(\begin{pmatrix} a+c\\ a-i+j \end{pmatrix} \right)_{1 \le i,j \le b}$$

$$det A_1^1 = det_{2 \le i,j \le n} \left(\begin{pmatrix} a+c\\ a-i+j \end{pmatrix} \right) = det_{1 \le i,j \le n-1} \left(\begin{pmatrix} a+c\\ a-i+j \end{pmatrix} \right) = A_n^n$$

$$det A_1^n = A_n^1 = det_{2 \le i, \le n, 1 \le j \le n} \left(\begin{pmatrix} a+c\\ a-i+j \end{pmatrix} \right) = det_{1 \le i, \le n-1} \left(\begin{pmatrix} a+c\\ a-1-i+j \end{pmatrix} \right)$$

Symmetric Cyclic symmetric Complementary symmetric Summary

$$A = \left(\begin{pmatrix} a+c \\ a-i+j \end{pmatrix} \right)_{1 \le i,j \le b}$$

$$det A_1^1 = det_{2 \le i,j \le n} \left(\begin{pmatrix} a+c \\ a-i+j \end{pmatrix} \right) = det_{1 \le i,j \le n-1} \left(\begin{pmatrix} a+c \\ a-i+j \end{pmatrix} \right) = A_n^n$$

$$det A_1^n = A_n^1 = det_{2 \le i, \le n, 1 \le j \le n} \left(\begin{pmatrix} a+c \\ a-i+j \end{pmatrix} \right) = det_{1 \le i, \le n-1} \left(\begin{pmatrix} a+c \\ a-1-i+j \end{pmatrix} \right)$$

$$det A = det_{1 \le i,j \le b} \left(\begin{pmatrix} a+c \\ a-i+j \end{pmatrix} \right) = \prod_{i=1}^a \prod_{j=1}^b \prod_{k=1}^c \frac{i+j+k-1}{i+j+k-2}$$

(MacMahon's theorem)

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

Symmetric Cyclic symmetric Complementary symmetric Summary

LU factorization

$$\blacktriangleright A = \left(\binom{a+c}{a-i+j} \right)_{1 \le i,j \le b}.$$

Sophie Burrill Plane partitions and tilings

・ロト ・回ト ・ヨト ・ヨト

LU factorization

Symmetric Cyclic symmetric Complementary symmetric Summary

►
$$A = \left(\begin{pmatrix} a+c \\ a-i+j \end{pmatrix} \right)_{1 \le i,j \le b}$$
. Solve through *L*.*U* factorization?

・ロト ・回ト ・ヨト ・ヨト

Symmetric Cyclic symmetric Complementary symmetric Summary

LU factorization

・ロン ・御 と ・ 言 と ・ 言 と

Symmetric Cyclic symmetric Complementary symmetric Summary

LU factorization

A = ((^{a+c}_{a-i+j}))_{1≤i,j≤b}. Solve through L.U factorization?
Try for small n = {1, 2, 3, 4, ...} to solve M(n).U(n) = L(n)
Guess! Easy?

・ロト ・回ト ・ヨト ・ヨト

Symmetric Cyclic symmetric Complementary symmetric Summary

Identification of factors

・ロン ・回 と ・ヨン ・ヨン

Symmetric Cyclic symmetric Complementary symmetric Summary

- Identification of factors
- Guessing (computer)

・ロト ・回ト ・ヨト ・ヨト

Next step?

Symmetric Cyclic symmetric Complementary symmetric Summary

Employ symmetric functions!

・ロト ・回 ト ・ヨト ・ヨト