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Abstract. We give a review of the elementary properties of spin chains together with
some applications to the enumeration of alternating sign matrices. The main references
concerning spin chains are [1, 2].
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1. Introduction

Spin chains are the simplest examples of the so called quantum integrable systems. The
idea is to translate Liouville’s definition of classical integrable systems in the formalism of
quantum mechanics.

Definition 1.1. A system is said to be Liouville–integrable if it is an Hamiltonian system

such that the number of independent constants of the motion in involution is equal to the

number of degrees of freedom.

Hence a classical system formulated in terms of geometric objects is integrable if it has
enough symmetries, their consequences being the existence of constants of the motion.
When these conditions are satisfied the presence of these extra structures often gives the
possibility to investigate the solutions in detail.

In quantum statistical mechanics a system is given by a Hilbert space called the space of

states of the system and a selfadjoint operator acting on this space called the Hamiltonian

of the system. The spectrum of this Hamiltonian corresponds to the set of values the energy
of the system can take. Our problem is to compute this spectrum. For certain spin chains
this is a reasonable goal if we extend the methods of classical integrability to an operatorial
setting.

2. Necessary Conditions for the Integrability of Spin Chains

Let N ∈ N∗, V and A be two complex vector spaces. The integer N fixes the size of the
system, V is the local space of states and A is the auxiliary space.

The space of states of the system is the tensor product of N copies of the local space
of states:

St
def
= V ⊗N = V ⊗ ...⊗ V ⊗ ...⊗ V ,

the nth factor in the tensor product is called the nth local space of states.

We introduce a series of operators which are caracterised as solutions of the necessary
conditions for integrability:

• the L-operators La,n(λ) ∈ End(A ⊗ St) for n ∈ [[1, N ]] and λ ∈ C. The index
(a, n) indicates that the operator acts trivially everywhere except on the auxiliary
space A and the nth local space of states;

• the R-operator Ra1,a2(λ1, λ2) ∈ End(A ⊗ A) with λ1, λ2 ∈ C. The index (a1, a2)
indicates that it acts nontrivially on the two copies of the auxiliary space. We
assume that the R-operator is invertible;

Definition 2.1. The monodromy of the system is the operator Ta(λ) ∈ End(A ⊗ St)
defined as the product of the L-operators on each site:

Ta(λ)
def
= La,N (λ)La,N−1(λ) ... La,1(λ) .
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The R and L-operators are solution of the following necessary conditions for integrability:

• the Yang–Baxter equation in End(A⊗3) for λ1, λ2, λ3 ∈ C

Ra1,a2(λ1, λ2)Ra1,a3(λ1, λ3)Ra2,a3(λ1, λ2) = Ra2,a3(λ1, λ2)Ra1,a3(λ1, λ3)Ra1,a2(λ1, λ2) ;

• the intertwining equation in End(A⊗2 ⊗ V ) for n ∈ [[1, N ]] and λ1, λ2 ∈ C

Ra1,a2(λ1, λ2)La1,n(λ1)La2,n(λ2) = La2,n(λ2)La1,n(λ1)Ra1,a2(λ1, λ2) ;

• the ultralocality equation in End(A⊗2⊗St) for 1 ≤ n 6= m ≤ N and λ1, λ2 ∈ C

La1,n(λ1)La2,m(λ1) = La2,m(λ1)La1,n(λ1) .

From these relations we can deduce a few elementary properties indicating the possibility
of integrability.

Theorem 2.2. The monodromy of the system satisfies an intertwining equation in End(A⊗2⊗
St):

Ra1,a2(λ1, λ2) Ta1(λ1) Ta2(λ2) = Ta2(λ2) Ta1(λ1)Ra1,a2(λ1, λ2) .

Proof. It is a computation. We rewrite the left hand side of the equation in terms of the
L-operators:

Ra1,a2(λ1, λ2)La1,N(λ1) ... La1,1(λ1)La2,N(λ2) ... La2,1(λ2)

= Ra1,a2(λ1, λ2)La1,N(λ1)La2,N(λ2) ... La1,1(λ1)La2,1(λ2) ,

by using the ultralocality equation repeatedly. We can now apply repeatedly the intertwin-
ing equation for L-operators in order to transfer the R-operator from the left to the right
of the product:

... = La2,N(λ2)La1,N(λ1)Ra1,a2(λ1, λ2) ... La1,1(λ1)La2,1(λ2)

= La2,N(λ2)La1,N(λ1) ... La2,1(λ2)La1,1(λ1)Ra1,a2(λ1, λ2) .

Finally we use again the ultralocality equation in order to make the monodromy reappear:

... = La2,N(λ2) ... La2,1(λ2)La1,N(λ1) ... La1,1(λ1)Ra1,a2(λ1, λ2) = Ta2(λ2) Ta1(λ1)Ra1,a2(λ1, λ2) .

�

We define the generating function of the conserved quantities Q(λ) ∈ End(St) as
the trace of the monodromy over the auxiliary space:

Q(λ)
def
= tra(Ta(λ))

def
=

N∑

n=0

Qn λ
n .

Corollary 2.3. For all λ, µ ∈ C the generating functions Q(λ) and Q(µ) commute.
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Proof. We supposed the R-operator invertible. Hence we can rewrite the intertwining
equation for the monodromy as:

Ta1(λ1) Ta2(λ2) = R−1
a1,a2

(λ1, λ2) Ta2(λ2) Ta1(λ1)Ra1,a2(λ1, λ2) .

We take the trace of this equation on End(A⊗2):

tra1,a2(Ta1(λ) Ta2(µ)) = tra1,a2(R
−1
a1,a2

(λ, µ) Ta2(µ) Ta1(λ)Ra1,a2(λ, µ)) = tra1,a2(Ta2(µ) Ta1(λ))

by using the cyclicity property of the trace on End(A⊗2). This equation reads:

Q(λ)Q(µ) = Q(µ)Q(λ) .

�

An immediate consequence of this corollary is that {Qn}n∈[[1,N ]] is a family of commuting
operators acting on the space of states of the system. This is a clue for integrability. Making
the parallel with classical integrable systems we interpret these operators as the equivalent
of the constants of the motion. Taking Q0 = H as the Hamiltonian of some system of
quantum statistical mechanics, the equations of the motion for these operators are:

dQn

dt

def
= [H,Qn] = 0 .

3. The XXX Heisenberg Spin Chain

3.1. Definition of the System. As a system of quantum statistical mechanics the XXX
spin chain is defined by a space of states and a Hamiltonian.

The space of states is fixed by the choice V = A = C2 i.e. St = C2 ⊗ ... ⊗C2 where we
think of each copy of C2 as attached to one of the N sites of a one dimensional lattice. From
a physical point of view the spin is related to the Lie algebra sl2(C). A two dimensional
representation of sl2(C) is given by the generators:

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
,

in the canonical basis of C2 with the notation | ↑〉 = ( 1
0 ) for spin up, | ↓〉 = ( 0

1 ) for spin
down. We interpret a measure on the system as applying the operators σx, σy, σz on a
element of C2.

As an example, σz|↑〉 = (+1)|↑〉 and σz|↓〉 = (−1)|↓〉, hence the denomination spin up
for the eigenvalue +1 and spin down for the eigenvalue −1.

We define the operators σ•
n ∈ End(St) for n ∈ [[1, N ]] and • ∈ {x, y, z} such that σ•

n acts
trivially everywhere except on the nth site where it acts as σ•. We suppose that the spin
chain is periodic that is for every On ∈ End(St) whe have On+N = On. The Hamiltonian
of the XXX spin chain Hxxx ∈ End(St) is defined by:

Hxxx
def
= −

N∑

n=1

σx
n σ

x
n+1 + σy

n σ
y
n+1 + σz

n σ
z
n+1 .
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We can rewrite the Hamiltonian in a simpler way. For this we introduce the permuta-

tion operator Pn,m ∈ End(St) defined by

Pn,m |s1 ...
n

ŝn ...
m

ŝm ... sN〉 = |s1 ...
n

ŝm ...
m

ŝn ... sN〉 ,

with the notation |s1 ... sn ... sm ... sN〉 = |s1〉 ⊗ |s2〉 ⊗ .... ⊗ |sN〉.

Properties 3.1. The permutation operator satisfies the following properties:

(a) Pn,p Pn,q = Pp,q Pn,p = Pn,q Pp,q ,

(b) 2Pn,n+1 = σx
n σ

x
n+1 + σy

n σ
y
n+1 + σz

n σ
z
n+1 + idn,n+1 .

Proof. We start with property (a). We look at the action of these three operators on the
same vector:

Pn,p Pn,q |...
n

ŝn ...
p

ŝp ...
q

ŝq ...〉 = Pn,p |...
n

ŝq ...
p

ŝp ...
q

ŝn ...〉 = |...
n

ŝp ...
p

ŝq ...
q

ŝn ...〉 ,

Pp,q Pn,p |...
n

ŝn ...
p

ŝp ...
q

ŝq ...〉 = Pp,q |...
n

ŝp ...
p

ŝn ...
q

ŝq ...〉 = |...
n

ŝp ...
p

ŝq ...
q

ŝn ...〉 ,

Pn,q Pp,q |...
n

ŝn ...
p

ŝp ...
q

ŝq ...〉 = Pn,q |...
n

ŝn ...
p

ŝq ...
q

ŝp ...〉 = |...
n

ŝp ...
p

ŝq ...
q

ŝn ...〉 ,

which gives us the equality of these three operators.
To prove property (b) we look at the matrices representing the operators in the canonical

basis of C2⊗C2. We use the definition of the tensor product of matrices, for A = (aij), B =
(bij):

A⊗ B =



∗ ∗ ∗
∗ aij B ∗
∗ ∗ ∗


 .

So the matrices of these operators are:

Pn,n+1 =




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


 , idn,n+1 =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 , σx

nσ
x
n+1 = σx⊗σx =




0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0


 ,

σy
nσ

y
n+1 = σy ⊗ σy =




0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0


 , σz

nσ
z
n+1 = σz ⊗ σz =




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1


 .

Taking the sum gives us the identity. �

Usiing the property (b) satisfied by the operator of permutation we have a simpler
expression for the Hamiltonian:

Hxxx =
N∑

n=1

idn,n+1 − 2Pn,n+1 .



SPIN CHAINS IN COMBINATORICS 5

The next step is to construct and diagonalise this Hamiltonian using the properties satisfied
by R and L-operators.

3.2. Algebraic Bethe Ansatz. We need to solve the conditions for integrability with
V = A = C2 such that we can recover the Hamiltonian for the XXX spin chain from the
generating function Q(λ).

We start with the R-operator in End(C2⊗2), λ1, λ2 ∈ C defined by:

Ra1,a2(λ1, λ2)
def
= f(λ1, λ2) ida1,a2 + Pa1,a2 ,

with f(λ1, λ2) = 2 (λ2 − λ1).

Proposition 3.2. The R-operator defined above is a solution of the Yang–Baxter equation

in End(C2⊗3).

Proof. We write explicitly the left hand side and the right hand side of the Yang–Baxter
equation then we identify the terms using elementary properties of the permutation oper-
ator. �

The similarity between the Yang–Baxter and the intertwining equation for L-operators
is such that if we define for all n ∈ [[1, N ]]

La,n(λ)
def
= (λ+ 1)Ra,n(λ, 0)

we automatically obtain a solution of the intertwining equation.

Proposition 3.3. The L-operators defined above are solution of the intertwining equation

in End(C2⊗3) and satisfy the ultralocality equation in End(C2⊗N+2).

Proof. We write the intertwining equation in terms of the R-operator and we use the fact
that it is a solution of the Yang–Baxter equation:

Ra1,a2(λ, µ)La1,n La2,n = (λ+ 1)(µ+ 1)Ra1,a2(λ, µ)Ra1,n(λ, 0)Ra2,n(µ, 0)

= (λ+ 1)(µ+ 1)Ra2,n(µ, 0)Ra1,n(λ, 0)Ra1,a2(λ, µ) = La2,n La1,nRa1,a2(λ, µ) .

The ultralocality equation is satisfied. For 1 ≤ n 6= m ≤ N , it is equivalent to

Ra1,n(λ, 0)Ra2,m(µ, 0) = Ra2,m(µ, 0)Ra1,n(λ, 0)

which is verified since the permutation operators Pa1,n and Pa2,m commute as they are
acting on different spaces. �

To introduce the algebraic Bethe ansatz we use a specific decomposition of the mon-
odromy of the system. With A = C2 we have End(A ⊗ St) ∼= M2(C) ⊗ End(St). So we
can write the monodromy as:

Ta(λ)
def
=

(
A(λ) N+(λ)
N−(λ) D(λ)

)
,

with A(λ),N+(λ),N−(λ),D(λ) ∈ End(St) and Q(λ) = A(λ)+D(λ). In order to prove the
algebraic Bethe ansatz theorem we need a technical lemma.
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Lemma 3.4. The operators A,N+,D satisfy the following relations for g(λ, µ) = 1 +
f(λ, µ):

N+(λ)N+(µ) = N+(µ)N+(λ) ,

A(λ)N+(µ) =
g(µ, λ)

f(µ, λ)
N+(µ)A(λ) −

1

f(µ, λ)
N+(λ)A(µ) ,

D(λ)N+(µ) =
g(λ, µ)

f(λ, µ)
N+(µ)D(λ) −

1

f(λ, µ)
N+(λ)D(µ) .

Proof. We extract these relations from the intertwining equation for the monodromy in
End(A⊗A⊗ St) ∼= M4(C)⊗End(St):

Ra1,a2(λ, µ) Ta1(λ) Ta2(µ) = Ta2(µ) Ta1(λ)Ra1,a2(λ, µ) .

We write Ra1,a2(λ, µ), Ta1(λ), Ta2(µ) as 4 by 4 matrices whose coefficients are operators on
the space of states of the system such that the intertwining equation corresponds to a
product of matrices. We work in the canonical basis of C2 ⊗ C2.

The R-operator acts only on A⊗ A:

Ra1,a2(λ, µ) = f(λ, µ) ida1,a2 + Pa1,a2 =




g(λ, µ) 0 0 0
0 f(λ, µ) 1 0
0 1 f(λ, µ) 0
0 0 0 g(λ, µ)


 .

The operator Ta1(λ) acts trivially on the second copy of A⊗A and Ta2(µ) acts trivially on
the first copy of A⊗ A, so we get:

Ta1(λ) =

(
A(λ) N+(λ)
N−(λ) D(λ)

)
⊗

(
1 0
0 1

)
=




A(λ) 0 N+(λ) 0
0 A(λ) 0 N+(λ)

N−(λ) 0 D(λ) 0
0 N−(λ) 0 D(λ)


 ,

Ta2(µ) =

(
1 0
0 1

)
⊗

(
A(µ) N+(µ)
N−(µ) D(µ)

)
=




A(µ) N+(µ) 0 0
N−(µ) D(µ) 0 0

0 0 A(µ) N+(µ)
0 0 N−(µ) D(µ)


 .
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We compute the product of these matrices and keep only the terms corresponding to our
relations:




∗ ∗ g(λ, µ)N+(λ)A(µ) g(λ, µ)N+(λ)N+(µ)
∗ ∗ ∗ ∗
∗ ∗ ∗ N+(λ)D(µ) + f(λ, µ)D(λ)N+(µ)
∗ ∗ ∗ ∗




=




∗ ∗ N+(µ)A(λ) + f(λ, µ)A(µ)N+(λ) g(λ, µ)N+(µ)N+(λ)
∗ ∗ ∗ ∗
∗ ∗ ∗ g(λ, µ)N+(µ)D(λ)
∗ ∗ ∗ ∗


 .

The identification of the coefficients gives the relations. �

We have all that is necessary to introduce the algebraic Bethe ansatz. A pseudo-

vacuum of the system is a vector |ω〉 ∈ St such that:

N−(λ)|ω〉 = 0 , A(λ)|ω〉 = α(λ)|ω〉 , D(λ)|ω〉 = δ(λ)|ω〉 .

Theorem 3.5 (Algebraic Bethe Ansatz). The vector N+(µ1) ...N+(µM)|ω〉 is an eigen-

vector of Q(λ) with the eigenvalue

α(λ)

M∏

k=1

g(µk, λ)

f(µk, λ)
+ δ(λ)

M∏

k=1

g(λ, µk)

f(λ, µk)

if and only if for all i ∈ [[1,M ]], µi is solution of Bethe equation

α(µi)

δ(µi)

M∏

j=1
j 6=i

g(µj, µi)

g(µi, µj)
= (−1)M−1 .

Proof. Since Q(λ) = A(λ)+D(λ) we can use the lemma to see how A and D are acting on
the possible eigenvector:

A(λ)

M∏

k=1

N+(µk)|ω〉 = α(λ)

M∏

k=1

g(µk, λ)

f(µk, λ)

M∏

l=1

N+(µl)|ω〉

+
M∑

i=1

−
α(µi)

f(µi, λ)

M∏

j=1
j 6=i

g(µj, µi)

f(µj, µi)
N+(λ)

M∏

k=1
k 6=i

N+(µk)|ω〉 ,
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D(λ)

M∏

k=1

N+(µk)|ω〉 = δ(λ)

M∏

k=1

g(λ, µk)

f(λ, µk)

M∏

l=1

N+(µl)|ω〉

+

M∑

i=1

−
δ(µi)

f(λ, µi)

M∏

j=1
j 6=i

g(µi, µj)

f(µi, µj)
N+(λ)

M∏

k=1
k 6=i

N+(µk)|ω〉 .

We observe that in order for N+(µ1) ...N+(µM)|ω〉 to be an eigenvector we need that for all
i ∈ [[1,M ]]:

α(µi)

f(µi, λ)

M∏

j=1
j 6=i

g(µj, µi)

f(µj, µi)
+

δ(µi)

f(λ, µi)

M∏

j=1
j 6=i

g(µi, µj)

f(µi, µj)
= 0 .

But since f(λ, µ) = 2 (µ − λ) = −f(µ, λ), dividing by the second term of the sum gives
Bethe equation. �

Explicitly for the XXX spin chain, the monodromy of the system is the product of the
R-operators:

Ta(λ) = (λ+ 1)N Ra,N(λ, 0) ... Ra,1(λ, 0) .

We write the R-operator as a 2 by 2 matrix with coefficients ân, d̂n, η̂+,n, η̂−,n ∈ End(V )
acting on the nth local space of states:

Ra,n(λ, 0) =

(
ân(λ) η̂+,n(λ)

η̂−,n(λ) d̂n(λ)

)
,

with

ân(λ) =

(
g(λ, 0) 0

0 f(λ, 0)

)
, d̂n(λ) =

(
f(λ, 0) 0

0 g(λ, 0)

)
, η̂+,n =

(
0 0
1 0

)
, η̂−,n =

(
0 1
0 0

)
.

From the form of Ra,n(λ, 0) we see that |ω〉 = |↑〉 ⊗ |↑〉 ⊗ ... ⊗ |↑〉 is a pseudo-vacuum of
the system with α(λ) = (λ+ 1)N g(λ, 0)N and δ(λ) = (λ+ 1)N f(λ, 0)N . The eigenvalues
of Q(λ) are

[(λ+ 1)(1− 2λ)]N
M∏

k=1

1 + 2(µk − λ)

2(µk − λ)
+ [(λ+ 1)(−2λ)]N

M∏

k=1

1 + 2(λ− µk)

2(λ− µk)

with the µi solutions of Bethe equation

2µi − 1

2µi

M∏

k=1
k 6=i

1 + 2(µk − µi)

1 + 2(µi − µk)
= (−1)M−1 .

Finally we should not forget to prove that this formalism solves the problem of the XXX
spin chain i.e. that we can recover the Hamiltonian of the system from the generating
function Q(λ).
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Proposition 3.6. The Hamiltonian of the system is given by

Hxxx =
d lnQ(λ)

dλ

∣∣∣∣
λ=0

.

Proof. First of all we need to compute Q(0) and its inverse. Since Ra,n(0, 0) = Pa,n:

Q(0) = tra(Ra,N(0, 0) ... R1,a(0, 0)) = tra(Pa,N Pa,N−1 ... Pa,1) .

By using the property (a) of the permutation operator we obtain:

Q(0) = tra(PN,N−1 Pa,N Pa,N−2 ... Pa,1) = ... = PN,N−1 PN,N−2 ... PN,1 tra(PN,a)

and

Q(0)−1 =
1

tra(PN,a)
PN,1 ... PN,N−2 PN,N−1 .

We also need to compute dQ/dλ:

dQ

dλ
= N(λ + 1)N tra(Ra,N (λ, 0) ... Ra,1(λ, 0))

+ (λ+ 1)N tra

(
N∑

n=1

Ra,N (λ, 0) ...
dRa,n(λ, 0)

dλ
... Ra,1(λ, 0)

)

with dRa,n/dλ = −2 ida,n. Using again property (a) we end up with:

d lnQ(λ)

dλ

∣∣∣∣
λ=0

= N idSt− 2

N∑

n=1

Q(0)−1 PN,N−1 ... PN,n+1 PN,n−1 ... Pn,1 tra(Pa,N) = N idSt−2

N∑

n=1

Pn,n−1 .

Because of the periodicity of the chain we conclude that it is the Hamiltonian of the system:

d lnQ(λ)

dλ

∣∣∣∣
λ=0

=
N∑

n=1

idn,n+1 − 2Pn,n+1 .

�

4. The XXZ Heisenberg Spin Chain

5. The Six–Vertex Model and Alternating Sign Matrices
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