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We begin by exploring one of the major differences in domains of functions of single variable and
several complex variables. In single variable case we have the following situation :

Proposition 0.1. Let U be a domain (open connected set) of C. Then there exist f holomorphic
on U , f ∈ H(U) which cannot be analytically extended to any larger open set.

It is important to note that the above result is not true in Cn where n ≥ 2. So we can find some
domain U and V such that U ⊂ V ⊂ Cn such that functions holomorphic on U is also holomorphic
on V .

Proposition 0.2. Let ∆(0, r) be an open polydisc in Cn with n > 1. Set r = (r1, . . . , rn) and

r
′

= (r1, . . . , rn−1). Let U be an connected open subset of ∆(0, r) and for each z
′ ∈ ∆(0, r

′
) set

Uz′ = {zn ∈ C : (z
′
, zn) ∈ U}. Assume that U has the following properties :

(i) there is a fixed s < rn such that ∆̄(0, s) contains the complement of Uz′ in ∆(0, rn) for each

z
′ ∈ ∆(0, r

′
);

(ii) the equality Uz′ = ∆(0, rn) holds for all z
′

in some open subset of ∆(0, r
′
).

Then every holomorphic function on U has a holomorphic extension to ∆(0, r).

Proof. See Section 2.5 in [1]. �

It is easy to construct examples of the above situation :

Example : Let ∆(0, r) be an open polydisc and U = ∆(0, r) − K, where K is any compact
subset of ∆(0, r). which does not separate ∆(0, r). Clearly U and ∆(0, r) satisfies the conditions of
above proposition. Thus any function holomorphic on ∆(0, r) −K extends to be holomorphic on
all of ∆(0, r).
Example: Let A be the open annulus ∆(0, 1)− ∆̄(0, 1/2) and set U = (∆(0, 1)×A)∪ (∆(0, 1/2)×
∆(0, 1)) ⊂ ∆(0, (1, 1)). Here U and ∆(0, (1, 1)) both satisfies the conditions of above proposition.
The result is a solid cylinder of length 1 and radius 1 with hole of radius 1/2 drilled half way
through from one end.

Definition. An open set U ⊂ Cn is called a domain of holomorphy if there exist f ∈ H(U)
such that for all z on the boundary of U and each polyradius r, there is no holomorphic function
on ∆(z, r) which is equal to f on a component of ∆(z, r) ∩ U .
In other words, U is a domain of holomorphy if there is a holomorphic function on U which has no
local holomorphic extension across part of the boundary of U .
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Definition. Holomorphic convex hull of a compact set K in U denoted by C(K|U) = {z ∈ U :
∀f ∈ H(U), |f(z)| ≤ ‖f‖K} where ‖f‖K = sup{|f(z)| : z ∈ K} is the operator seminorm of K.

Moreover an open set U ⊂ Cn is said to be holomorphically convex if C(K|U) is compact for
each compact subset K ⊂ U .

Proposition 0.3. If U is an open set in Cn, then U is a domain of holomorphy if and only if U
is holomorphically convex.

Proof. See Section 2.5 in [1]. �
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