Summary: Topology of $\mathcal{H}(U)$

Brad Jones

October, 1 2012

For $U \in \mathbb{C}$, $\mathcal{H}(U)$ is a *complex algebra* under pairwise addition and multiplication.

We would like to define a topology on $\mathcal{H}(U)$ which we shall call the topology of *uniform convergence* (Also known as the compact-open topology). To do this we will construct open sets using seminorms. **Definition 0.1.** A seminorm on an \mathbb{C} -vector space X is a map $\rho: X \to \mathbb{R}^+$ such that:

$$\begin{aligned} \rho(x+y &\leq \rho(x) + \rho(y) & \forall x, y \ X \\ \rho(\gamma x) &= |\gamma| \rho(x) & \forall x \in X, \gamma \in \mathbb{C} \end{aligned}$$

We note that a norm has the additional property that $\rho(x) = 0$ if and only if x = 0.

For each compact subset, $K \in U$, we define $|| \cdot ||_K$ as:

$$||f||_K = \sup_{z \in K} |f(z)|.$$

Note that $|| \cdot ||_K$ is a seminorm on $\mathcal{H}(U)$.

Definition 0.2. A neighbourhood basis at a point $g \in \mathcal{H}(U)$ is a set $\{f \in \mathcal{H}(U) : ||f - g||_K < \epsilon\}$ for some $\epsilon \in \mathbb{R}$.

To define a topology on $\mathcal{H}(U)$ we shall look at the following theorem that defines a topology on a more general space.

Theorem 0.3. Let V be a vector space over $(\mathbb{C} \setminus \mathbb{R})$ and $(\rho_i)_{i \in I}$ be a family of seminorms.

For $F \subset I$ finite define:

$$U_{F,\epsilon} = \bigcap_{i \in F} \{ x \in V : \rho_i(x) < \epsilon \}.$$

Define

$$\mathcal{U}^{curl} = \{ U_{F,E} : \epsilon > 0, F \subset I \text{ finite} \}$$

and

$$\tau = \{ O \subset V : \forall x \in O \exists U \in \mathcal{U}^{curl} \ s.t. \ x + U \subset O \}.$$

Then τ defines the open sets of a topology on V.

Proof. To prove that τ defines a topology on V we need to show that it satisfies the three axioms of open sets.

- 1. $V, \emptyset \in \tau$. (trivial)
- 2. τ is closed under union. (take $x \in O$ and then take the ϵ and F from whichever set of the union it comes from)
- 3. τ is closed under finite intersection. (take $x \in O$ and then take minimum ϵ_j and union of F_j of each intersecting set)

We can also make $\mathcal{H}(U)$ a metric with the following measure:

$$d(x,y) = \sum_{n=0}^{\infty} \frac{2^{-n}\rho_n(x-y)}{1+\rho_n(x-y)} \; \forall x,y \in V,$$

where $\rho_n = || \cdot ||_{K_n}$ for some nested sequence of compact subsets of U, $\{K_n\}$. **Theorem 0.4.** Let $(f_j)_{j \in \mathbb{N}}$ be a sequence of functions in $\mathcal{H}(U)$. Then $(f_j)_{j \in \mathbb{N}}$ converges with respect to τ if and only if $(f_j)_{j \in \mathbb{N}}$ converges compactly on U.

Proof. Let $K \subset U$ be compact. Then there exists j_k such that $K \subset K_{j_K}$.

If $f_j \to f$ with respect to τ then

$$\sup_{z \in K} |f_j(z) - f(z)| = ||f_j - f||_K \le ||f_j - f||_{K_{j_K}} \to 0.$$

So $(f_j)_{j \in \mathbb{N}}$ converges uniformly on K.

Conversely if

$$\lim_{j \to \infty} \sup_{z \in K} |f_j(z) - f(z)| = 0 \ \forall \text{ compact } K \subset U$$

then

$$\lim_{j \to \infty} d(f_j, f_j) = \lim_{j \to \infty} \sum_{n=0}^{\infty} \frac{2^{-n} ||f_j - f||_{K_n}}{1 + ||f_j - f||_{K_n}} = 0.$$

The following theorem shows that $\mathcal{H}(U)$ is complete on the topology τ . **Theorem 0.5.** If $\{f_n\}$ is a sequence of holomorphic functions on U which is uniformly convergent on each compact subset of U then the limit is also holomorphic.

To prove this theorem we shall employ Morena's Theorem, given below.

Theorem 0.6 (Morena's Theorem). If f is continuous complex-valued function defined on a connected open subset D with

$$\iint_{\gamma} f = 0$$

for all closed curves γ in D then f is holomorphic on D.

Now to prove Theorem 0.5:

Proof. We apply Morena's Theorem to each variable. This means the limit is continuous. By applying Osgood's Lemma we get that the limit is holomorphic. \Box

We just showed that $\mathcal{H}(U)$ is a Fréchet Space - it is a complete metric. Now we shall show it is also a Montal Space - it is a Fréchet Space with the additional property that every closed bounded subset is compact. **Theorem 0.7.** Every closed bounded subset of $\mathcal{H}(U)$ is compact.

Proof. Since $\mathcal{H}(U)$ is a metric space it is sufficient to show that every bounded subsequence in $\mathcal{H}(U)$ has a convergent subsequence.

Let $\{f_n\}$ be a bounded sequence in $\mathcal{H}(U)$.

We would like to show that $\{f_n\}$ that $\{f_n\}$ has a uniformly convergent subsequence on each compact subset $K \subset U$. We know by the previous theorem that if the limit of the subsequence is continuous then it is holomorphic.

By the Adcoli-Arzela Theorem, a *bounded equicontinuous* sequence of functions on a compact set has a uniformly convergent subsequence.

By the Cauchy Inequality Theorem $\{f_n\}$ has a uniformly bounded sequence of complex sequence of complex partial derivatives $\{\frac{\partial f_n}{\partial z_i}\}$ for each complex variable, z_j .

By the Cauchy Riemann Theorem, the real and imaginary partial derivatives of $\{f_n\}$ have a uniformly bounded sequence of partial derivatives.

By applying the Minimum Value Theorem we obtain a continuous limit.

References:

Scheidemann, V. Introduction to Complex Analysis in Several Variables. Basel; Boston: Birkhuser Verlag, 2005.