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The Weierstrass theorems are a set of powerful theorems we can use to provide inductive arguments on
germs, which shall be defined next, and unlock inverse and implicit function theorems.

Definition 0.1. Let X be a topological space, x ∈ X and U, V neighbourhoods of x.

If f is a function defined on U , g is a function defined on V and f(y) = g(y) for all y ∈ W ⊂ U ∩ V then f
is equivalent to g (f ≡ g) at x.

We call f = {g : f ≡ g at x} the germ of f at x.

We note that the germs of complex functions at x is an algebra over C. We shall denote this algebra by

nHλ.

Now we shall introduce a multitude of propositions, to prepare us to prove the Weierstrass Theorems.

Prop 0.2. The algebra nH0 may be described as C{z1, . . . , zn} the algebra of convergent power series in n
variables on some polydisc.

Proof. See Proposition 3.1.2 of Taylor.

Definition 0.3. Let f be a holomorphic function defined in a neighbourhood of 0, 0 ≤ k <∞.

• f has vanishing order k in zn at 0 if f(0, . . . , 0, zn) has a zero of order k at 0.

• f has finite vanishing order in zn at 0 if f(0, . . . , 0, zn) does not vanish identically in a neighbourhood
of z = 0.

• The germ, f ∈n H0 has vanishing order k in zn if it has a representative that has vanishing order k.

Prop 0.4. If f is a holomorphic function in a neighbourhood U of 0 and has vanishing order k in zn at 0
then there is a polydisc ∆(0, r′) × δ(0, rn) such that for each z ∈ ∆(0, r′), f(z′, zn) as a function of zn has
exactly k zeroes in ∆(0, rn), and no zeroes on the boundary of ∆(0, rn).

Proof. See Proposition 3.3.1 of Taylor.

Definition 0.5. If U is a neighbourhood of 0 and T ⊂ U is open then T is a thin subset if for every z ∈ U ,
there exists a neighbourhood V of z with a f ∈ H(V ) such that f |V ∩T = 0, but f does not vanish identically
on any neighbourhood of z.

Prop 0.6 (Removable Singularity Theorem). If f is bounded and holomorphic on an open set of the form,
U \ T , where U is open and T is thin, then f has a unique holomorphic extension to U .
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Proof. See Theorem 3.3.2 of Taylor.

Now we shall introduce elementary symmetric functions and power sum functions so we can define the
Weierstrass polynomials used in the Weierstrass theorems.

Definition 0.7. An elementary symmetric function is of the form: φj(z) for j = 1, . . . , n where

n∏
i=1

(λ− zi) = λn − φ(z)n+1λn+1 + · · ·+ (-1)nφn(z).

For example: φ1(z) =
∑n
i=1 zi and φ2(z) =

∑
0<i<j≤n zizj .

Definition 0.8. A power sum function is of the form:

sk = zk1 + · · ·+ zkn

for k = 1, . . . , n.

Lemma 0.9. Each elementary symmetric function, φj, may be written as a polynomial in power sum
functions s1, . . . , sn.

Proof. See Lemma 3.3.3 of Taylor.

Definition 0.10. A Weierstrass polynomial of degree k in zn is a polynomial, h ∈n−1 H0[zn] of the form:

h(z) = zkn + a1(z′)zk−1n + · · ·+ ak−1(z′)zn + ak(z′)

where z = (z′, zn) and ai are non-units in n−1H0.

Now we are ready to state the first of the Weierstrass Theorems, the Weierstrass Preparation Theorem,
which can be used to write a germ as the product of a unit and a Weierstrass polynomial.

Theorem 0.11 (Weierstrass Preparation Theorem). If f ∈n H0 has vanishing order k in zn then f has a
unique factorization as f = uh where, h is a Weierstrass polynomial of degree k in zn is and u is a unit in

nH0.

Proof. Fix a representative, f , of f . By Proposition 0.4 there is a polydisc ∆(0, r) such that f(z′, zn) has
exactly k zeroes, b1(z′), . . . , b1(z′).

We want the Weierstrass polynomial:

h(z) =

k∏
j=1

(zn − bj(z′)) = zkn − a1(z′)zk−1n + · · ·+ (−1)kak(z′),

since it has the same zeroes as f(z′, zn).

We claim that a(z) are holomorphic. The ai(z
′) are symmetric functions of bj ’s and so by the lemma, we

can write ai(z
′) as polynomials in power sums, sm, where

sm =

k∑
j=1

bmj .
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From residue theory we get:

sm(z′) =
1

2πi

∫
|ξ|=rm

ξm∂f
∂ξ (z′, ξ)

f(z′, ξ)
dξ.

Thus the sm(z′) are holomorphic and so are the ai’s.

Since the bj ’s vanish at z = 0, the aj ’s vanish at the origin. Thus the germ h is a Weierstrass polynomial.

It remains to show that u = f/h is holomorphic and non-vanishing in ∆(0, r). Then f = uh.

For each fixed z′ ∈ ∆(0, r), f/h : zn → f(z,z′)
h(z′,zn)

(ie. fix z′), has a holomorphic extension to ∆(0, r). This

is because the numerator and denominator have the same zeroes and h is bounded away from 0 on the
boundary of ∆(0, r). By the maximum modulus principle, f/h is bounded on ∆(0, r). Since f/h is holomorphic
everywhere except h = 0, we use the Riemann singularity Theorem to extend f/h to the whole polydisc.

The factorization is unique and therefore h and u are unique. Finding their germs we get the factorization
we are looking for.

Next we introduce the Weierstrass Division Theorem, which defines the division of germs by Weierstrass
polynomials.

Theorem 0.12 (Weierstrass Division Theorem). If h ∈ n−1H0[zn] is a Weierstrass polynomial of degree k
and f ∈ nH0 then f can be uniquely written as

f = gh+ q

where g ∈ nH0 and q ∈ n−1H0 is a polynomial with degree less than k. If f is a polynomial then so is g.

Proof. Pick representatives f and h of f and h respectively which are defined in a neighbourhood of the poly-
disc, ∆(0, r) such that h(z′, z) has exactly k zeroes in ∆(0, rn) as a function of zn for each fixed z′ ∈ ∆(0, r′),
where r = (r′, rn).

Define

g(z) :=
1

2πi

∫
|ξ|=rn

f(z′, ξ)

h(z′, ξ)(ξ − zn)
dξ.

Then g(z) is holomorphic in ∆(0, r). Thus q := f − gh is holomorphic in ∆(0, r) as well and

q(z) =
1

2πi

∫
|ξ|=rn

f(z′, ξ)

h(z′, ξ)

h(z′, ξ)− h(z′ − zn)

ξ − zn
dξ.

However
h(z′, ξ)− h(z′, zn)

ξ − zn
is a polynomial in zn with degree less than k since ξ is a zn root of h. Therefore q is a polynomial of degree
less than k.

For uniqueness, suppose that f = gh + q = g1h + q1 are two representations with q, q1 having degree less
than k. Then q − q1 = (g1 − g)h and thus q = q1 and g1 = g.

If f is a polynomial in zn then by polynomial division, f = gh+ q where g and q are polynomials and q has
degree less than k. By uniqueness of representation this coincides with our division above.
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We finish with a nice algebraic theorem.

Theorem 0.13. The ring nH0 is Noetherian.

Proof. Prove by induction on n.

Base Case 0H0 = C is Noetherian.

Inductive Case Assume nH0 is Noetherian.

We will that show that n+1H0 is Noetherian by showing that every non-trivial proper ideal of n+1H0

is finitely generated.

Let J be a non-trivial proper ideal of n+1H0.

By the Weierstrass Preparation Theorem, there is some Weierstrass polynomial h in J (f = uh ∈ J =⇒
u-1uh = h ∈ J).

By definition h ∈ nH0[zn+1]∩J . By the inductive hypothesis nH0 is Noetherian. Therefore nH0[zn+1]
is Noetherian and thus J ∩ nH0[zn+1] is finitely generated.

If f ∈ J , then by Weierstrass Division f = gh+ q. Since h, q ∈ J ∩ nH0[zn+1], f can be gernerated by
the generators of J ∩ nH0 and thus J is finitely generated.
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