Summary: Weierstrass theorems

Brad Jones

October, 29 2012

The Weierstrass theorems are a set of powerful theorems we can use to provide inductive arguments on germs, which shall be defined next, and unlock inverse and implicit function theorems.

Definition 0.1. Let X be a topological space, $x \in X$ and U, V neighbourhoods of x.

If f is a function defined on U, g is a function defined on V and f(y) = g(y) for all $y \in W \subset U \cap V$ then f is equivalent to g ($f \equiv g$) at x.

We call $\underline{f} = \{g : f \equiv g \text{ at } x\}$ the germ of f at x.

We note that the germs of complex functions at x is an algebra over \mathbb{C} . We shall denote this algebra by ${}_{n}H_{\lambda}$.

Now we shall introduce a multitude of propositions, to prepare us to prove the Weierstrass Theorems.

Prop 0.2. The algebra $_{n}H_{0}$ may be described as $\mathbb{C}\{z_{1}, \ldots, z_{n}\}$ the algebra of convergent power series in n variables on some polydisc.

Proof. See Proposition 3.1.2 of Taylor.

Definition 0.3. Let f be a holomorphic function defined in a neighbourhood of $0, 0 \le k < \infty$.

- f has vanishing order k in z_n at 0 if $f(0, \ldots, 0, z_n)$ has a zero of order k at 0.
- f has finite vanishing order in z_n at 0 if $f(0, \ldots, 0, z_n)$ does not vanish identically in a neighbourhood of z = 0.
- The germ, $\underline{f} \in_n H_0$ has vanishing order k in z_n if it has a representative that has vanishing order k.

Prop 0.4. If f is a holomorphic function in a neighbourhood U of 0 and has vanishing order k in z_n at 0 then there is a polydisc $\Delta(0, r') \times \delta(0, r_n)$ such that for each $z \in \Delta(0, r')$, $f(z', z_n)$ as a function of z_n has exactly k zeroes in $\Delta(0, r_n)$, and no zeroes on the boundary of $\Delta(0, r_n)$.

Proof. See Proposition 3.3.1 of Taylor.

Definition 0.5. If U is a neighbourhood of 0 and $T \subset U$ is open then T is a *thin subset* if for every $z \in U$, there exists a neighbourhood V of z with a $f \in \mathcal{H}(V)$ such that $f|_{V \cap T} = 0$, but f does not vanish identically on any neighbourhood of z.

Prop 0.6 (Removable Singularity Theorem). If f is bounded and holomorphic on an open set of the form, $U \setminus T$, where U is open and T is thin, then f has a unique holomorphic extension to U.

Proof. See Theorem 3.3.2 of Taylor.

Now we shall introduce elementary symmetric functions and power sum functions so we can define the Weierstrass polynomials used in the Weierstrass theorems.

Definition 0.7. An elementary symmetric function is of the form: $\phi_j(z)$ for j = 1, ..., n where

$$\prod_{i=1}^{n} (\lambda - z_i) = \lambda^n - \phi(z)^{n+1} \lambda^{n+1} + \dots + (-1)^n \phi_n(z).$$

For example: $\phi_1(z) = \sum_{i=1}^n z_i$ and $\phi_2(z) = \sum_{0 < i < j \le n} z_i z_j$.

Definition 0.8. A *power sum function* is of the form:

$$s_k = z_1^k + \dots + z_n^k$$

for k = 1, ..., n.

Lemma 0.9. Each elementary symmetric function, ϕ_j , may be written as a polynomial in power sum functions s_1, \ldots, s_n .

Proof. See Lemma 3.3.3 of Taylor.

Definition 0.10. A Weierstrass polynomial of degree k in z_n is a polynomial, $\underline{h} \in_{n-1} H_0[z_n]$ of the form:

$$\underline{\underline{h}}(z) = z_n^k + a_1(z')z_n^{k-1} + \dots + a_{k-1}(z')z_n + a_{k(z')}$$

where $z = (z', z_n)$ and a_i are non-units in ${}_{n-1}H_0$.

Now we are ready to state the first of the Weierstrass Theorems, the Weierstrass Preparation Theorem, which can be used to write a germ as the product of a unit and a Weierstrass polynomial.

Theorem 0.11 (Weierstrass Preparation Theorem). If $\underline{f} \in_n H_0$ has vanishing order k in z_n then \underline{f} has a unique factorization as $\underline{f} = \underline{u}\underline{h}$ where, \underline{h} is a Weierstrass polynomial of degree k in z_n is and \underline{u} is a unit in $_nH_0$.

Proof. Fix a representative, f, of \underline{f} . By Proposition 0.4 there is a polydisc $\Delta(0, r)$ such that $f(z', z_n)$ has exactly k zeroes, $b_1(z'), \ldots, b_1(z')$.

We want the Weierstrass polynomial:

$$h(z) = \prod_{j=1}^{k} (z_n - b_j(z')) = z_n^k - a_1(z') z_n^{k-1} + \dots + (-1)^k a_k(z'),$$

since it has the same zeroes as $f(z', z_n)$.

We claim that $a_i(z)$ are holomorphic. The $a_i(z')$ are symmetric functions of b_j 's and so by the lemma, we can write $a_i(z')$ as polynomials in power sums, s_m , where

$$s_m = \sum_{j=1}^k b_j^m.$$

From residue theory we get:

$$s_m(z') = \frac{1}{2\pi i} \int_{|\xi|=r_m} \frac{\xi^m \frac{\partial f}{\partial \xi}(z',\xi)}{f(z',\xi)} d\xi$$

Thus the $s_m(z')$ are holomorphic and so are the a_i 's.

Since the b_j 's vanish at z = 0, the a_j 's vanish at the origin. Thus the germ <u>h</u> is a Weierstrass polynomial.

It remains to show that u = f/h is holomorphic and non-vanishing in $\Delta(0, r)$. Then f = uh.

For each fixed $z' \in \Delta(0,r)$, $f/h : z_n \to \frac{f(z,z')}{h(z',z_n)}$ (ie. fix z'), has a holomorphic extension to $\Delta(0,r)$. This is because the numerator and denominator have the same zeroes and h is bounded away from 0 on the boundary of $\Delta(0,r)$. By the maximum modulus principle, f/h is bounded on $\Delta(0,r)$. Since f/h is holomorphic everywhere except h = 0, we use the Riemann singularity Theorem to extend f/h to the whole polydisc.

The factorization is unique and therefore h and u are unique. Finding their germs we get the factorization we are looking for.

Next we introduce the Weierstrass Division Theorem, which defines the division of germs by Weierstrass polynomials.

Theorem 0.12 (Weierstrass Division Theorem). If $\underline{h} \in {}_{n-1}H_0[z_n]$ is a Weierstrass polynomial of degree k and $\underline{f} \in {}_nH_0$ then \underline{f} can be uniquely written as

$$\underline{f} = \underline{g}\underline{h} + \underline{g}$$

where $\underline{q} \in {}_{n}H_{0}$ and $\underline{q} \in {}_{n-1}H_{0}$ is a polynomial with degree less than k. If \underline{f} is a polynomial then so is \underline{q} .

Proof. Pick representatives f and h of \underline{f} and \underline{h} respectively which are defined in a neighbourhood of the polydisc, $\Delta(0, r)$ such that h(z', z) has exactly k zeroes in $\Delta(0, r_n)$ as a function of z_n for each fixed $z' \in \Delta(0, r')$, where $r = (r', r_n)$.

Define

$$g(z) := \frac{1}{2\pi i} \int_{|\xi|=r_n} \frac{f(z',\xi)}{h(z',\xi)(\xi-z_n)} d\xi.$$

Then g(z) is holomorphic in $\Delta(0, r)$. Thus q := f - gh is holomorphic in $\Delta(0, r)$ as well and

$$q(z) = \frac{1}{2\pi i} \int_{|\xi|=r_n} \frac{f(z',\xi)}{h(z',\xi)} \frac{h(z',\xi) - h(z'-z_n)}{\xi - z_n} d\xi.$$

However

$$\frac{h(z',\xi) - h(z',z_n)}{\xi - z_n}$$

is a polynomial in z_n with degree less than k since ξ is a z_n root of h. Therefore q is a polynomial of degree less than k.

For uniqueness, suppose that $f = gh + q = g_1h + q_1$ are two representations with q, q_1 having degree less than k. Then $q - q_1 = (g_1 - g)h$ and thus $q = q_1$ and $g_1 = g$.

If f is a polynomial in z_n then by polynomial division, f = gh + q where g and q are polynomials and q has degree less than k. By uniqueness of representation this coincides with our division above.

We finish with a nice algebraic theorem.

Theorem 0.13. The ring $_{n}H_{0}$ is Noetherian.

Proof. Prove by induction on n.

Base Case $_0H_0 = \mathbb{C}$ is Noetherian.

Inductive Case Assume $_{n}H_{0}$ is Noetherian.

We will that show that $_{n+1}H_0$ is Noetherian by showing that every non-trivial proper ideal of $_{n+1}H_0$ is finitely generated.

Let J be a non-trivial proper ideal of $_{n+1}H_0$.

By the Weierstrass Preparation Theorem, there is some Weierstrass polynomial $\underline{\underline{h}}$ in J ($\underline{\underline{f}} = \underline{\underline{u}}\underline{\underline{h}} \in J \implies \underline{\underline{u}}^{-1}\underline{\underline{u}}\underline{\underline{h}} = \underline{\underline{h}} \in J$).

By definition $\underline{\underline{h}} \in {}_{n}H_{0}[z_{n+1}] \cap J$. By the inductive hypothesis ${}_{n}H_{0}$ is Noetherian. Therefore $nH_{0}[z_{n+1}]$ is Noetherian and thus $J \cap {}_{n}H_{0}[z_{n+1}]$ is finitely generated.

If $f \in J$, then by Weierstrass Division $\underline{\underline{f}} = \underline{\underline{a}}\underline{\underline{h}} + \underline{\underline{q}}$. Since $\underline{\underline{h}}, \underline{\underline{q}} \in J \cap {}_{n}H_{0}[z_{n+1}], \underline{\underline{f}}$ can be generated by the generators of $J \cap {}_{n}H_{0}$ and thus J is finitely generated.