SIMON FRASER UNIVERSITY						
DEPARTMENT OF MATHEMATICS						
	Midterm					
Math 303 Fall 2011						
Instructor: Dr. Yeats						
	November 3, 2011					
	1 1					
Name: Jolutions			(please print)			
family n	family name given name					
SFU ID:			@sfu.ca			
SFU-email						
Signature:						
Instructions:						
(1) Do not open this booklet until told to do so. Quest			on	Maximum	Score	
(2) write your name above. write your email 1D on the line provided for it.		1		2		
(3) Write your answer in the space provided below		1		2		
the question. If additional space is needed then use the back of the previous page. Your final an-		2		2		
swer should be simplified as far as is reasonable.				2		
(4) Make the method you are using clear in every						
case unless it is explicitly stated that no expla- nation is needed.				2		
(5) This exam has 9 questions on 8 pages (not in-				2		
cluding this cover page). Once the exam begins		0		~		
(6) No calculators, books, papers, or electronic de-				5		
vices shall be within the reach of a student during		7		5		
(7) During the examination, communicating			5			
with, or deliberately exposing written pa-				0		
pers to the view of, other examinees is for-				3 BONUS		
		Total		25		

a)	(i) let $t = 21, 2, 03$ ten AEE and BEE
	(ii) let $E = \{\{1, 23, 3\}$ the AEE and BEE
(ط	Take any $x \in A \cap \phi$. The $x \in A$ and $x \in \phi$
	but there are no XED so there are no XEAND
	This $An\phi = \phi$

- (3) (2 points) Do one of the following two questions.
 - (a) Write 4 using only $\{, \}$, and \emptyset .
 - (b) Let $f: 3 \to \omega$ be defined by $f(n) = n^2$ for $n \in 3$. Write f as a set; you may use ordered pairs and natural numbers without expanding them into sets.

a)
$$4 = 20, 1, 2, 3$$

= $\overline{20}, 1, 2, 3$
= $\overline{20}, \overline{10}, \overline{20}, \overline{20},$

(4) (2 points) Do one of the following two questions.

- (a) (i) Is $\{\{\{1,2,3\}\}\}$ an ordered pair? If so what are the first and second coordinates?
 - (ii) Is $\{\{a, \{\{b\}\}\}, \{a\}\}\$ an ordered pair? If so what are the first and second coordinates?
- (b) Is $\{(a, a), (b, d), (a, c), (a, d), (b, c)\}$ a cartesian product? If so what sets is it the cartesian product of?

(5) (2 points) Do one of the following three questions.

- (a) Express $x \subseteq y$ in our formal language without using any abbreviations.
- (b) Which of the following are well formed formulas (don't worry about parentheses as long as the meaning is clear).
 - (i) $\forall x((x=c) \land (\sim x))$
 - (ii) $\forall x \exists x ((y \in x) \lor (x \in z))$
 - (iii) $x \in x$

(c) Show that $(A \leftrightarrow B) \lor (B \leftrightarrow \sim A)$ is identically true using a truth table.

(6) (5 points) Do one of the following three questions.

- (a) Let A, B, and C be any sets. Show that $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.
- (b) Let E be any set and let $A, B \subseteq E$. Show that $A \subseteq B$ if and only if $B' \subseteq A'$.
- (c) Is the function $f: \omega \to \omega$ defined by

$$f(n) = \begin{cases} \frac{n}{2} & \text{if } n \text{ is even} \\ \frac{n-1}{2} & \text{if } n \text{ is odd} \end{cases}$$

one-to-one? Onto? Justify your answers.

Solutions for b) and c) are on pla

- (7) (5 points) Do one of the following three questions.
 - (a) Let \mathcal{S} be a nonempty set with the property that all elements of \mathcal{S} are successor sets. Show that $\bigcap \mathcal{S}$ is a successor set.
 - (b) Show that for any $n \in \omega$, if $x \in n$ then $x \subseteq n$.
 - (c) Give a one-to-one and onto function between ω and ω^+ . Be sure to show your justification that your map is one-to-one and onto.

for port c) see page 7

(8) (5 points) Do one of the following three questions.

Solutions will very

-

- (a) Explain how the axiom of subset selection lets us get around Russell's paradox
- (b) Explain how the axiom of choice can be viewed both as completely natural and as unreasonable. Be sure to discuss both sides of the issue.
- (c) Give a formulation or interpretation of the liar's paradox different from the ones discussed in class.

2)
$$f$$
 is not one-to-one as
 $f(2) = 1$ and $f(3) = \frac{3-1}{2} = 1$
so $f(2) = f(3)$ but $2 \neq 3$.

f is onto as for any new
$$f(2n) = n$$

(Fc) Define
$$f: \omega t \longrightarrow \omega$$

by $f(n) = nt$ for new
 $f(\omega) = 0$
 $\omega^{+} = \omega \cup 2\omega^{3}$ so this defines a function
ad by construction it maps into ω
one-to-one: Say $f(n) = f(b)$
if $f(n) = f(b) = 0$ then since no natural
number has 0 as a successor
we got $a=b=\omega$
otherwise $f(n) = f(b) = nt$ for some new
so $a=b=n$.

and: Take new
if
$$n=0$$
 then $-f(w)=n$
if $n\neq 0$ then $n=m+$ her some mercu
(namely $m=n-1$)
so $-f(m)=n$.

(9) (BONUS 3 points (your max score for the exam is 25)) Give an outline of the content of the course so far. Try to make it tell a coherent story.

