SIMON FRASER UNIVERSITY
 DEPARTMENT OF MATHEMATICS
 Midterm

Math 303 Fall 2011
Instructor: Dr. Yeats
November 3, 2011

Name: \qquad (please print)

SFU ID: \qquad @sfu.ca
SFU-email

Signature:

\qquad

Instructions:

(1) Do not open this booklet until told to do so.
(2) Write your name above. Write your email ID on the line provided for it.
(3) Write your answer in the space provided below the question. If additional space is needed then use the back of the previous page. Your final answer should be simplified as far as is reasonable.
(4) Make the method you are using clear in every case unless it is explicitly stated that no explanation is needed.
(5) This exam has 9 questions on 8 pages (not including this cover page). Once the exam begins please check to make sure your exam is complete.
(6) No calculators, books, papers, or electronic devices shall be within the reach of a student during the examination.
(7) During the examination, communicating with, or deliberately exposing written papers to the view of, other examinees is forbidden.

Question	Maximum	Score
1	2	
2	2	
3	2	
4	2	
5	2	
6	5	
7	5	
8	3	
9	3 BONUS	
Total	25	

(1) (2 points) Do one of the following three questions.
(a) Let $\mathcal{C}=\{\{a,\{b\}, d\},\{b, e\},\{\{a\}\}\}$. Calculate $\cup \mathcal{C}$.
(b) Let $E=\{\{\emptyset\},\{\{\emptyset\}\},\{\{\{\emptyset\}\}\}\}$ and $A=\{\{\{\emptyset\}\}\}$. Calculate A^{\prime}.
(c) Let $E=\{a, b,\{c\}\}$. Calculate $\mathcal{P}(E)$.
a)

$$
\begin{aligned}
U C & =\{a,\{b\}, d\} \cup\{b, e\} \cup\{\{a\}\} \\
& =\{a,\{b\}, d, b, e,\{a\}\}
\end{aligned}
$$

b)

$$
\begin{aligned}
A^{\prime}=E \cdot A & =\{\{\phi\},\{\{\phi 33,\{\{ \} \phi 33\}\}-\{\{\{\phi 33)\} \\
& =\{\{\phi\},\{\{\{\phi 33\}\}
\end{aligned}
$$

c) $P(E)=\{\phi,\{a\},\{b\},\{\{c\}\},\{a, b\},\{a,\{c\}\},\{b,\{c\}\}$,

$$
\{a, b,\{c 3\}\}
$$

(2) (2 points) Do one of the following two questions.
(a) Let $A=\{1,2\}$ and $B=\emptyset$. Give an example of a set which
(i) contains A as a subset and B as an element
(ii) contains B as a subset and A as an element
(b) Let A be any set, show that $A \cap \emptyset=\emptyset$.
a) (i) let $E=\{1,2, \phi\}$ then $A \subseteq E$ and $B \in E$
(ii) Let $E=\{\{1,23\}$ then $A \in E$ and $B \leq E$
b) Take any $x \in A \cap \phi$. The $x \in A$ ad $x \in \varnothing$ but there are no $x \in \phi$ so there are no $x \in \operatorname{An} \phi$ This $A \cap \phi=\phi$
(3) (2 points) Do one of the following two questions.
(a) Write 4 using only $\{$,$\} , and \emptyset$.
(b) Let $f: 3 \rightarrow \omega$ be defined by $f(n)=n^{2}$ for $n \in 3$. Write f as a set; you may use ordered pairs and natural numbers without expanding them into sets.
a)

$$
\begin{aligned}
4 & =\{0,1,2,3\} \\
& =\{\phi,\{\phi\},\{\phi,\{\phi 3\},\{\phi,\{\phi\},\{\phi,\{\phi\}\}\}\}
\end{aligned}
$$

b) $\quad f=\{(0,0),(1,1),(2,4)\}$
(4) (2 points) Do one of the following two questions.
(a) (i) Is $\{\{\{1,2,3\}\}\}$ an ordered pair? If so what are the first and second coordinates?
(ii) Is $\{\{a,\{\{b\}\}\},\{a\}\}$ an ordered pair? If so what are the first and second coordinates?
(b) Is $\{(a, a),(b, d),(a, c),(a, d),(b, c)\}$ a cartesian product? If so what sets is it the cartesian product of?
a) (i) Yes $\{\{\{1,2,33\}\}$ is $(\{1,2,3\},\{1,2,3\})$
so bot coordinates are $\{1,2,3\}$
(ii) Yes $\{\{a,\{\{b 3\}\},\{c\}\}$ is (a, \{\{b\}\})
so the first coordinate is a and the second coordinate is $\{\{b\}\}$
(5) (2 points) Do one of the following three questions.
(a) Express $x \subseteq y$ in our formal language without using any abbreviations.
(b) Which of the following are well formed formulas (don't worry about parentheses as long as the meaning is clear).
(i) $\forall x((x=c) \wedge(\sim x))$
(ii) $\forall x \exists x((y \in x) \vee(x \in z))$
(iii) $x \in x$
(c) Show that $(A \leftrightarrow B) \vee(B \leftrightarrow \sim A)$ is identically true using a truth table.
a)

$$
x \subseteq y \quad \text { is } \quad \forall z(z \in x \rightarrow z \in y)
$$

b) (i) not well formed
(ii) well formed
(iii) well formed
c)

A	B	$A \leftrightarrow B$	$\sim A$	$B \leftrightarrow \sim A$	whole thing
F	F	T	T	F	T
F	T	F	T	T	$(T$
T	F	F	F	T	T
T	T	T	F	F	T

these are all trues
so the formula is idatically the
(6) (5 points) Do one of the following three questions.
(a) Let A, B, and C be any sets. Show that $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$.
(b) Let E be any set and let $A, B \subseteq E$. Show that $A \subseteq B$ if and only if $B^{\prime} \subseteq A^{\prime}$.
(c) Is the function $f: \omega \rightarrow \omega$ defined by

$$
f(n)= \begin{cases}\frac{n}{2} & \text { if } n \text { is even } \\ \frac{n-1}{2} & \text { if } n \text { is odd }\end{cases}
$$

one-to-one? Onto? Justify your answers.
a) Take $x \in A \cap(B \cup C)$. The $x \in A$ and $x \in B \cup C$ that is, $x \in A$ av $x \in B$ or $x \in C$
that is, $(x \in A$ ad $x \in B)$ or $(x \in A \sim x \in C)$
that is, $x \in A \cap B$ or $x \in A \cap C$
that is $\quad x \in(A \cap B) \cup(A \cap C)$
so $A_{\cap}(B \cup C) \leq(A, B) \cup(A \cap C)$
Similarly take $x \in(A \cap B) \cup(A \cap C)$, the $x \in A \cap B$ or $x \in A_{n} C$ that is, $(x \in A$ and $x \in B)$ or $(x \in A$ a $x \in C)$
the is, $x \in A$ and $(x \in B$ or $x \in C)$
the $s, x \in A$ ad $x \in B \cup C$
that is, $\quad x \in A \cap(B \cup C)$
so $(A \cap B) \cup\left(A_{n} C\right) \subseteq A_{n}(B \cup C)$
Together ve get

$$
A \cap(B \cup C)=(A \cap B) \cup(A \cap C)
$$

Solution ha b) av do ar a plo
(7) (5 points) Do one of the following three questions.
(a) Let \mathcal{S} be a nonempty set with the property that all elements of \mathcal{S} are successor sets. Show that $\bigcap \mathcal{S}$ is a successor set.
(b) Show that for any $n \in \omega$, if $x \in n$ then $x \subseteq n$.
(c) Give a one-to-one and onto function between ω and ω^{+}. Be sure to show your justification that your map is one-to-one and onto.
a) let $T=U S$
$0 \in A$ hor all $A \in S$, therefore $O \in T$
Take $n \in T$. Then $n \in A$ hor all $A \in S$ so $n t \in A$ hor all $A \in S$ Therefore $n t \in T$

This T is a successor set
b) Use induction. Let S be the set of natural numbers n for which it is tree that if $x \in n$ ter $x \in n$

Note that thee are no $x \in O$ so trivially $0 \in S$
Take $n \in S$
Consider $n^{+}=n \cup\{n\}$
Take $x \in n^{+}$. There are two possibilities: either $x=n$ on $x \in n$
If $x=n$ then immediately $x \subseteq n^{+}$
If $x \in n$ then as $n \in S \quad x \leqslant n$ so $x \leqslant n^{+}$
In both cases n^{+}satisfies the desired property so $n^{+} \in S$
Therefore by the principle of mathematical induction $S=\omega$ ad so ne conduce that hor by $n \in \omega$

$$
x \in n \Rightarrow x \leqslant n
$$

for port c) see page 7
(8) (5 points) Do one of the following three questions.
(a) Explain how the axiom of subset selection lets us get around Russell's paradox
(b) Explain how the axiom of choice can be viewed both as completely natural and as unreasonable. Be sure to discuss both sides of the issue.
(c) Give a formulation or interpretation of the liar's paradox different from the ones discussed in class.
Solutions will vary
(6) b) Suppose $A \subseteq B$. Take any $x \in B^{\prime}$

The $x \in E$ ad $x \notin B$
lat $A \subseteq B$ so $x \notin B \Rightarrow x \notin A$
This $x \in E$ ad $x \notin A$
se $x \in A^{\prime}$. Therefore $B^{\prime} \subseteq A^{\prime}$
Supper $B^{\prime} \subseteq A^{\prime}$. Take ar $x \in A$. Note $A=\left(A^{\prime}\right)^{\prime}$
So $x \in E$ and $x \notin A^{\prime}$
lot $B^{\prime} \in A^{\prime}$ so $x \notin A^{\prime} \Rightarrow x \notin B^{\prime}$
Tho $x \in E$ an $x \notin B^{\prime}$
so $x \in\left(B^{\prime}\right)^{\prime}=B$ Therefore $A \subseteq B$
c) f is not one-to-ore as

$$
f(2)=1 \text { and } f(3)=\frac{3-1}{2}=1
$$

So $f(2)=f(3)$ but $2 \neq 3$.
f is auto as he any $n \in \omega$

$$
f(2 n)=n
$$

More space for the preceding if useful.
(7c) Define $f: \omega^{+} \rightarrow \omega$
by $f(n)=n^{+}$hor $n \in \omega$
$f(\omega)=0$
$\omega^{+}=\omega \cup\{\omega\}$ so this defies a function ad by constructor it maps into ω
ore-to-one: Say $f(a)=f(b)$
if $f(a)=f(b)=0$ then since no natural number hes O as a successor ne gat $a=b=w$
otherwise $f(a)=f(b)=n^{+}$for some n $n \in w$ so $a=b=n$.
onto: Take $n \in w$

$$
\text { if } n=0 \text { then } f(\omega)=0
$$

if $n \neq 0$ then $n=n+$ hor sore $n \in \omega$ (namely $m=n-1$)

$$
\text { so } f(n)=n \text {. }
$$

(9) (BONUS 3 points (your max score for the exam is 25)) Give an outline of the content of the course so far. Try to make it tell a coherent story.
jot a list wa worth 2 points
to get 3 you reeded to impose sore structure (more than chronological order)
on the topics - this is how they tell a story.

