- faculty of science
lepartment of mathematics . . .
RYRO ceparment of mathemaci LECTURE 16 More minimal change orderings

More minimal change orderings

Contents

1 More on revolving door order 1
1.1 Recall e e 1
1.2 Successor algorithm for the revolving doororder 1

2 Minimal change order for permutations 3
2.1 Recall e e e 3
2.2 Trotter-Johnsonorder. e 3
2.3 Trotter-Johnson rank andunrank 4

1 More on revolving door order

1.1 Recall
The revolving door order on k-subsets of {1,2,...,n}:
Ro(n) =[00...0]
k
Likewise,

Now, assume we have a minimal change sequence Ry (n — 1) for all k. Then
Ri(n) = 0- {Ri(n — 1}, 1- {Rir(n — 1)}
For example,
Ri(2) = [0Ry(1),1 Ro(1)f] = [01,10].
1.2 Successor algorithm for the revolving door order

The algorithm is a bit intricate. Let’s begin by stating it and then seeing why it works.
Algorithm: SuccessorRevolvingDoor
input: S, k, n. S is a k-subset of n

J=1

while 3 in S
j o= j+1
if k-j odd
if j=1
decrease the smallest element of S (STEP A)
else if j=2
increase the smallest element of S (STEP B)
else
replace j-2 by Jj in S (STEP C)
else
e = jth smallest element of S
if e+l not in S
if j=1
increase the smallest element of S (STEP D)
else if k=k and e=n
return no sucessor
else

MARNI MISHNA, SPRING 2011; KAREN YEATS, SPRING 2013 MATH 343: APPLIED DISCRETE MATHEMATICS PAGE 1/4

- faculty of science
lepartment of mathematics . . .
RYRO ceparment of mathemaci LECTURE 16 More minimal change orderings

replace j-1 by e+l in S (STEP E)
else
replace e+l by j in S (STEP F)
return S

The various steps have been labelled A through F to make them easier to refer to.

First notice that in step E, since we were not in the previous else if, then we must have ejn, and
so adding e+1 to S is valid. Next consider how each step affects j. Given S let T be the permutation
returned by the algorithm. Let j be the value of j calculated by the algorithm on S and let ;' be the
value of j on 7. Then

e If Sisin A and the smallest element was 2 (and so is decreased to 1) then j' = j + 1. Otherwise
i'=3j.
If Sis in B then ;' = j.

If Sisin C then j' = j — 2.

If S is in D then 5/ = j.

If Sisin E then j' = j — 1.

If S is in F then if e = j we are filling in all the way up to e so j/ = j + 2. Otherwise we are
guaranteed to have no jin S and so 7/ = j + 1.

With this notation, lets now prove the algorithm is correct, that is that T really is the successor to
S.

The proof is by induction on n. For the base case just check on n = 1. Now assume the algorithm
works for n — 1 and consider n.

First suppose n ¢ S. The only way the algorithm is in any way different from if it were called with
n — 1 in place of n is in the case j = k and ¢ = n — 1. In that case the algorithm with n — 1 returns
no successor and so by the induction hypothesis along with the characterization of the first as last
elements from last time S = {1,2,...,k —1,n — 1} and so the algorithm returns {1,2,...,k—2,n—1,n}
which is correct. In all other cases with n ¢ S the algorithm is the same as with n — 1 and so by
induction hypothesis is correct.

Now suppose n € S. First note that the only way to obtain j = k is when S = {1,2,...,k —1,n} in
which case the algorithm correctly gives no successor. In all other cases n € S is not touched solet T
be S after the algorithm has run, let S be S with n removed and let T be T with n removed. S and T
are in Rj,_1(n — 1) and so the parity of k has changed for S and T

Now work case by case using the observations above.

e If Sisin A with first element greater than 2 then T has the same j but the parity of £ has changed,
so T is in D. D reverses what A did and so by induction T has S as its successor. Thus by definition
T is the correct successor to S.

e If Sis in A with first element 2 then in T the parity of j and k have both changed. This gives that
T is in B. B also reverses A and so we can conclude as above that T is the correct successor to .S

e If Sis in B then in 7 the parity of j and k have bother changed so T is in A which reverses B and
so we conclude as above.

e If Sis in C then the parity of j in T is the same as in S while the parity of k has changed. Thus T
is in F with e = k which reverse C so as above we'’re done.

e If $isin D then j is unchanged in T but the parity of k has changed so T is in A which reverse D
so done.

e If Sisin E then j and k both change parity in T so T is in F which reverse E so done.

MARNI MISHNA, SPRING 2011; KAREN YEATS, SPRING 2013 MATH 343: APPLIED DISCRETE MATHEMATICS PAGE 2/4

- faculty of science
lepartment of mathematics . . .
RYRO ceparment of mathemaci LECTURE 16 More minimal change orderings

e If Sis in F with e # j then j and k both change parity in T so 7T is in E so done.

e If Sis in F with e = j then the parity of j stays the same while the parity of ¥ changes in T. This
puts 7" in C and so again we’re done.

This covers all cases, so by induction the algorithm returns the revolving door successor.

2 Minimal change order for permutations

2.1 Recall

Recall that a permuation of {1,2,...,n} is a bijection of {1,2,...,n} with itself We can represent a
permutation by the list of its values. For example given the permutation o : {1,2,3} — {1,2, 3} defined
by o(1) = 3, 0(2) = 2 and ¢(3) = 1 we can represent o by the list [3,2,1].

2.2 Trotter-Johnson order

Let us consider the minimal distance between two permutations to be those permutations that differ
by a transposition or swap. Thus, the permutations at distance 1 from the identity permutation are
all precisely the set of transpositions, that is, permutations consisting of exactly one cycle of length 2.
Let us add the additional constraint that the swap must occur for adjacent entries. This means for two
permutations o and T of minimal distance that there exists some & such that

o(i)=7@)fori € L.n]\{k,k+1}; o(k)=7(k+1)ando(k+1)=71(k).

For example,c = [3712564] and 7 = [3715264]. We now give a recursive scheme to generate per-

mutations under this minimal distance. Let 0 = [01 03 ...0,] be a permutation of n. We associate
the
o1 oy ... o0p n+1] n+l o1 o2 ... On
o1 o9 ... o n+1 On o1 n+1 ... op_1 On
o = o :
o1 n+1 ... 0,1 On o1 1D .. n+1 On
n+1 o1 cer Op_1 On o1 o9 . o, n+1

For example

41 3 2
L |1 432
B327 =11 3 4 5
13 2 4

Now we describe the code. Let R(n) be a listing of the permutations of length n, and suppose that r,, (k)
be the k-th element. We describe R(n + 1):

R(n+1) = :
rn(nl— 1)<
rn(nl)™

This ordering is called the Trotter-Johnson ordering of permutations.

MARNI MISHNA, SPRING 2011; KAREN YEATS, SPRING 2013 MATH 343: APPLIED DISCRETE MATHEMATICS PAGE 3/4

- faculty of science
lepartment of mathematics . . .
RYRO ceparment of mathemaci LECTURE 16 More minimal change orderings

2.3 Trotter-Johnson rank and unrank

Its not too hard to rank recursively, we just need to know if we are zigzagging forwards or backwards,
which we can determine from the rank of the permutation of the recursive call.
Algorithm: RecursiveRankTrotterJohnson
input L, n. L a permutation of n written as a list of values
if n=1 then return O
k=1
while L(k) !=n
k = k+1
let S = L with n removed
r = RecursiveRankTrotterJohnson (S, n-1)
if r even
return nr + n - k
return nr + k - 1

How do we write this nonrecursively? We just need to do the analogous calculation for every value,
not just n.

Algorithm: RankTrotterJohnson
input L, n. L a permutation of n written as a list of values

r =20
for 7 from 2 to n
k=1
i=1
while L(i) != 3
if L(i) < 5
k = k+1
i = 1i+1

if r even
r=Jr + j -k
else
r = Jr + k - 1
return r

For example if we apply this algorithm to L = (3,4,2,1), n = 4 we begin with » = 0. When j = 2 we
calculate £k = 1; r is even so we have r = 2-0+ 2 — 1 = 1. When j = 3 we calculate k¥ = 1; r is odd so
wehaver =3-1+1—1=23. When j = 4 we calculate k = 2; risodd sor =4-3+2 — 1 = 13. So that
algorithm gives the rank of 13 which is correct.

The unrank algorithm is build similarly
Algorithm: UnrankTrotterJohnson

input n, r.

L(l) =1
r2 =0
for j from 2 to n
rl = floor((r*7j!)/n!)

k = rl - j*r2
if r2 is even
for j from j-1 down to Jj-k

L(i+1) = L(1)
L(j-k) = j
else
for j from j-1 down to k+1
L(i+1) = L(1)
L(k+1l) = 3
r2 = rl

return L

For the successor function see your homework. A reference for this material is Combinatorial Algo-
rithms by Kreher and Stinson, chapter 2.

MARNI MISHNA, SPRING 2011; KAREN YEATS, SPRING 2013 MATH 343: APPLIED DISCRETE MATHEMATICS PAGE 4/4

