MATH447/747 ASSIGNMENT 3

FALL 2012

The following questions are optional questions. They do not need to be handed in and will not be graded if they are handed in

- Vanstone and van Oorschot section 3.9 \# 13, 21
- Vanstone and van Oorschot section 3.9 \# 26. What if the code must be linear? What if it is not necessarily linear?

The following questions are to be handed in. They are due Friday September 28 in class.
(1) Let $x_{1}, x_{2}, \ldots, x_{n}$ be commuting indeterminants. Let

$$
V=\left[\begin{array}{ccccc}
1 & x_{1} & x_{1}^{2} & \cdots & x_{1}^{n-1} \\
1 & x_{2} & x_{2}^{2} & \cdots & x_{2}^{n-1} \\
\vdots & \vdots & \ddots & \vdots & \\
1 & x_{n} & x_{n}^{2} & \cdots & x_{n}^{n-1}
\end{array}\right]
$$

(a) Show that $x_{i}-x_{j}$ divides det V by considering what happens if we set $x_{i}=x_{j}$ in V.
(b) Show that $\operatorname{det} V=\prod_{1 \leq i<j \leq n}\left(x_{j}-x_{i}\right)$
(c) Let a be a primitive element of \mathbb{F}_{p} with p prime. Let

$$
H=\left[\begin{array}{ccccc}
1 & a & a^{2} & \cdots & a^{p-2} \\
1 & a^{2} & a^{4} & \cdots & a^{2(p-2)} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & a^{k} & a^{2 k} & \cdots & a^{k(p-2)}
\end{array}\right]
$$

with $k<p-2$ be the parity check matrix for a linear code C. What is the distance of C ?
(2) Vanstone and van Oorschot section 3.9 \# 7. You may use a computer, but if you do then please submit the sequence of commands you use or the source for the program you write.
(3) Vanstone and van Oorschot section 3.9 \# 36, 69, 70

