
COMPLETION AND RELATED CONSTRUCTIONS

BRETT NASSERDEN

Filtrations,the Artin Reese Lemma and Krull's Theorem

Abstract: Pete Clark says �I very much appreciate that �nding the right bit of structure can make the solutions
to your problem self evident.� In this paper we will look at some bits of structure, that can at least help make some
solutions to certain problems evident. The over arching idea, as I see it, is the construction of new rings and modules
from known rings and modules that behave nicely can help us learn about the original ring in suitable circumstances.
Speci�cally, we will look at constructions that arise from chains of ideals and or submodules. We start by considering
the associated graded rings that arise give descending sequences of submodules and various constructions and prove
the Artin Reese Lemma and Krull's Theorem. We then turn to completion, and de�ne it in two di�erent ways.
Namely via Cauchy sequences and the inverse limit. After showing the de�nitions are equivalent we prove some things
about completion. By and large we will follow Eisenbud's Commutative Algebra through chapters 5 and 7 and Atiyah
McDondald's Introduction to Commutative Algebra with more of the details �lled in.

De�nition. Let {Ij}j be a descending sequence of ideals. We call such a sequence a �ltration if IiIj ⊆ Ii+j . The
obvious example is the I − adic �ltration In = In.

Some examples: Take I = (x) in C[x] for concreteness. Then In = (xn). So ∩nIn = (0). On the other hand, when
is the intersection non-empty? Take R = Z2 Then take I =< (1, 0) >. So (1, 0)n = (1, 0) for all n and so (1, 0) ∈ In
for all n. This means In = I. We can also make things strictly decreasing. Take, (1, 0) and (0, 2) in R as above. Put
I = (1, 0)Z2 and J = (0, 2)Z2. Now de�ne T = I + J . Note that if i ∈ I and j ∈ J then ij = 0. Furthermore, In = I
but Jn is strictly decreasing. So ∩n≥1Tn 6= (0) and the Tn are strictly decreasing.

De�nition. Let M be an R module and suppose that {In} is a descending �ltration.A descending sequence {Mn} of
submodules is called an I �ltration if IMn ⊆ Mn+1 for all n. We say an I �ltration is I stable if for all but �nitely
many n we have that IMn = Mn+1.

Example. Let M be any R module, and I any ideal. Set Mn = InM . Then Mn is I stable.

De�nition. Let I be an ideal of a ring R. We de�ne grIR := ⊕∞n=0I
n/In+1. (Where I0 := R) We make grIR into

a ring as follows. If a ∈ In and b ∈ Im then we set (a + In+1) · (b + Im+1) = ab + In+m+1. More generally, let
F := M = M0 ⊇M1 ⊇ .... be a I �ltration, we de�ne grFM := ⊕∞n=0Mn/Mn+1. We make grFM into a graded grIR
module in the obvious way. Namely, if in + In+1 ∈ In/In+1 and mk ∈ Mk/Mk+1 then (in + In+1) · (mk + Mk+1) =
inmk +Mn+k+1. This is well de�ned because F is an I �ltration.

Proposition. Let I be an ideal of a ring R and F and I stable �ltration of a R module M . If the sub modules of the

�ltration are �nitely generated then so is the associated graded module over grIR.

Proof: There is an n such that for i ≥ n we have IMi = Mi+1. In this case, note that if mi+1 ∈ Mi+1 then there
is some t ∈ I and mi ∈ Mi with tmi = mi+1. Then working in the graded structure gives (t + I2)(mi + Mi+1) =
tmi + Mi+2 = mi+1 + Mi+2. That is, (I/I2)(Mi/Mi+1) = Mi+1/Mi+2. So let G be the generators of the �rst n sub
modules. So we can write, (I/I2)(Mn/Mn+1) = Mn+1/Mn+2. Continuing inductively gives (Ii/Ii+1)(Mn/Mn+1) =
Mi+n/Mn+i+1. Since elements of grFM are �nite sums, the generators of Mn/Mn+1 and the generators of the �rst n
sub modules are enough to give everything.

Remark. The intuition is that stable �ltration's are kind of like �nitely generated modules. The above translates the
intuition into concrete facts about the graded constructions.

De�nition. LetM be an R module with a �ltration F . Given f ∈M we set s : M → N∪{∞} be the map that sends
f to the largest integer m such that f ∈Mm and f to in�nity if f ∈ ∩∞n=1Mn. Now set in(f) = f +Ms(f)+1 ⊆ grFM
if s(f) is �nite, and in(f) = 0 otherwise. Given an ideal I of R and a I �ltration of M with N ≤M we de�ne in(N)
to the module generated by the initial forms of elements of N . I.E in(N) =< in(f) : f ∈ N > in grFM .

Example. The in operator can behave in not so nice ways. Consider J =< xy + y3, x2 >⊆ k[x, y] and let I = (x, y).
Put the I-adic �ltration on k[x, y]. in(J) =< in(f) : f ∈ J >. Notice that in(x2) = x2 + (x, y)3k[x, y] and
in(xy+y3) = xy+y3 + (x, y)2k[x, y] = xy+ (x, y)2k[x, y]. So the question is whether, in(J) is generated by the initial
forms of the generators of J . But this is not the case as we can look at what the degrees of elements spanned by
xy + (x, y)2k[x, y] and x2 + (x, y)3k[x, y]. Now, y5 ∈ J so y5 + I6k[x, y] ∈ in(J) but we cannot generate y5 + I6k[x, y]
with our given generators.
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De�nition. Let R be a ring and I an ideal. We set BIR := ⊕∞n=0I
n = R⊕ I ⊕ I2 ⊕ .... ∼= R[tI]. If F is a I �ltration

then the blow up will be BFM = ⊕∞i=0Mi.

Lemma. BIR/IBIR :∼= grIR

Proof: Let πi : Ii → Ii/Ii+1 be the canonical projection. Consider π :
∑
πi → grIR. π is clearly a surjection.

Now, suppose that π(
∑n

k=0 ik) =
∑n

k=0 πk(ik) = 0. Then we must have that πk(ik) = 0 for each k and so ik ∈ Ik+1.

Now, ik ∈ Ik+1 means that ik ∈ IBIR and so the sum of the ik are in IBIR. So kerπ ⊆ IBIR . On the other hand,
any element in IBIR is in the kernel so we have the result.

Remark. So we can regard grIR as R[tI]/IR[tI].(Where R[tI] = {
∑n

k=0 ikx
k : ik ∈ Ik}) Now, given f ∈ R what is

in(f) intuitively? Well, if in(f) 6= 0 let in(f) = f +In+1. On the otherhand, in BIR we have that f can be thought of
as the element, f + fx+ ....+ fxn. So in grIR this is the element

∑n
j=0 fx

j + IR[tI]. Notice that
∑n

j=0 fx
j /∈ IR[tI].

So in this sense, in(f) = xnf + IR[tI] and the initial term picks o� the highest order the element f in the blow up
algebra, and then projects this down into the graded ring. So in this sense, the in operator behaves somewhat like
picking o� the highest order term in a monomial ordering. ( If the reader is not familiar with monomial orders and
wishes to learn then Eisenbud's chapter 15 treats them. For an easier read, there is Ideals,Varieties, and Algorithms
by David A. Cox, John B. Little and Don O'Shea.)

Note. The blow up algebras have geometric interpretations and roles. For example, see Eisenbud 5.2 for a brief
discussion.

The proposition below is interesting, it takes a question about the stability of �ltrations of �nitely generated
modules, and then relates this to a module theoretic question about the blow up ring and blow up algebra. Since we
have a large body of theory to draw upon when dealing with modules this can be useful.

Proposition. Let R be a ring and I an ideal. Let M be a f.g. R module with I �ltration F by �nitely generated R
modules. F is stable if and only if BFM is a �nitely generated BIR module.

Proof: Suppose that BFM is �nitely generated. We can take a �nite set of homogenous elements of the Mi for
i ≤ n (for some n) with the homogenous elements also generating each Mi. Now, let m ∈Mn+i for some i > 0. Then
there are some generators mj,k with mj,k ∈ Mj for j ≤ n. Then, if

∑
rj,kmj,k = m we know, because of the graded

structure, that rj,kmj,k ∈ Mn+i. That is, rj,k ∈ In+i−j . But then, using the grading we can look at this as a sum of
elements in Mn multiplied by elements in Ii. So we have that, as a BIR module, Mn generates ⊕∞i=0Mn+i or that
Mn+i = IiMn so that the �ltration is I stable. Conversely, suppose that the �ltration is I stable. Then, for all i ≥ n
we have IMi = Mi+1. So, take the generators of the M0,M1, ...,Mn as homogenous elements. Then we know that
IiMn = Mn+i and so over the blow up algebra, we get everything.

We now come to the Artin Reese Lemma which concerns Noetherian rings.

Theorem. Artin Reese

Let R be a Noetherian ring, and J := M0 ⊇ ... a I stable �ltration. Let N be a submodule of M0. Then, the induced

�ltration is also I stable. That is, there is an n such that for all i ≥ n we have N ∩Mi+1 = I(Mi ∩N).

Proof: The �ltration is I stable. This means that BJM is �nitely generated as a BIR module. Now, BIR is in
fact Noetherian as a ring since we can regard BIR ∼= R[It] ⊆ R[t] which is Noetherian by Hilbert's Basis theorem.
Now, ⊕∞i=0N ∩Mi is a sub module of BJM . Since, BJM is �nitely generated over a Noetherian ring, we have that
BJM is Noetherian, which means that ⊕∞i=0N ∩Mi is �nitely generated over BIR and so stable as desired.

It is interesting how easy this was. Although I suppose it is not so surprising. We are dealing with chain conditions;
the Noetherian hypothesis is one of the premier chain conditions, there must be a reason it is so popular.

Theorem. Krull Intersection Theorem

Let R be a Noetherian ring, and I a proper ideal. If M is a f.g. R module then there is an element r ∈ I such that

(1− r) ∈ ann(∩∞i=1I
iM). If we further insist that R is local, or a domain then we have ∩∞j=1I

j = {0}.

Proof: We prove the �rst statement about modules �rst. Consider the stable �ltration Mn = InM . Then Artin
Reese applies to N = ∩∞i=1I

iM so there is some m such that for i ≥ m we have

(∩∞i=1I
iM) ∩ Im+1M = I((∩∞i=1I

iM) ∩ ImM)

But we have (∩∞i=1I
iM) ∩ Im+1M = (∩∞i=1I

iM) and (∩∞i=1I
iM) ∩ ImM) = ∩∞i=1I

iM so by the above we have
IN = N . This is a general situation. If N is �nitely generated (It is here since it is a submodule of a Noetherian
module M) and I a proper ideal, then IN = N ⇒ ∃i ∈ I such that (1 − i)N = 0. For example, see corollary 2.5 of
Atiyah McDonald. Since we are in this situation, we have the annihilator part of the proof. Now suppose that R is a
domain. Apply the theorem to M = R. Then InR = In so there is some i ∈ I with (1 − i) ∩∞n=1 I

n = 0. But, I is
proper so 1− i 6= 0. So ∩∞n=1I

n must only contain zero as R is a domain. If R is local, then apply the same argument,
but note that 1− i must be a unit.

Corollary. Let R be a Noetherian Local Ring and I a proper ideal of R. If grIR is a domain then R is also a domain.
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Proof: In a certain sense, the proof writes itself if we buy that in : R→ grIR is an interesting map. Then if fg = 0
in R we have that in(f)in(g) = 0 in grIR. But then we have that in(f) = 0 or in(g) = 0 in grIR. But if say in(f) = 0
by de�nition we have f ∈ ∩∞i=1I

n. But by the intersection theorem we know that ∩∞i=1I
n = 0 so that f = 0 and so R

is a domain.

Remark. One immediately wonders if the converse holds. It does not. Take R = k[x, y]/(x2 − y3) and I = (x, y).
It is well known that (x2 − y3) is irreducible, so R is a domain. Now let In = (x, y)n(k[x, y]/(x2 − y3)). Note that
x̄ /∈ (x, y)2k[x, y]/(x2 − y3). This means that in the associated graded ring we have in(x̄) = x̄ + I2R. Now, take x̄2.
In the graded ring, we are multiplying an element from I1/I2 by itself, so we get an element in I2/I3. So we have
in(x)2 = x̄2 + I3R. We want x̄2 ∈ I3R. But y3(1 + (x2 − y3)) = y3 + (x2 − y3) = x2 + (x2 − y3).(As elements of R)
Since y3 ∈ I3 and 1 + (x2 − y3) ∈ R we have x2 + I3R = I3R which is the zero of this ring. Since in(x)2 has no more
components in the associated graded ring, in(x̄)2 = 0 in grIR.

So certain nice properties of rings such as being a domain are not preserved by taking the graded structure. On the
otherhand, (with suitable assumptions) nice properties of the graded structure can be re�ected back to the original
ring. On the other hand, some properties are preserved. As usual, being noetherian usually behaves fairly well.

Proposition. Let R be a Noetherian ring and I an ideal. Then grIR is Noetherian.

Proof: We know that R being Noetherian means that BIR is Noetherian by Hilbert's Basis theorem. So we know
that any quotient is Noetherian. But then by an earlier lemma we have BIR/IBIR ∼= grIR is noetherian as desired.

Remark. This �nishes our initial discussion on �ltrations and the associated graded ring. One of the more interesting
elements of the above work is (in my opinion) an example the quote in the abstract. We found that certain questions
about �ltrations under some suitable assumptions could be related to standard module theoretic questions, which
allowed us to leverage results such as the Hilbert Basis Theorem on questions that were (at least not to me) obviously
related.

Completion

Completion is another construction that arises through �ltrations. There are two de�nitions, both equivalent. One
is purely algebraic, and the other at least feels more geometric. Throughout, it may be helpful to take as an example
of all things we are doing as follows. Let R = k[x1, ..., xn] and m = (x1, ..., xn).

Algebraic Definition

The algebraic de�nition is easier to state. Let {mi} be a descending sequence of �ltrations of a ring R. We de�ne
the completion of R with respect to the �ltration {mi} to be

R̂{mi} := lim
←
R/mi

Where the compatibility maps are the projections ϕj
i (x + mj) = x + mi. (for j ≥ i of course.) Note that

R̂{mi} = {(x̄i ∈
∏∞

i=1R/mi : ϕj
i (x̄j) = x̄i for all j ≥ i}.

Example. Let p ∈ Z be any prime number. Then then completion of Z with respect to the ideal (p) is called the
p adic integers and (perhaps unfortunately given how many constructions bear this notion) written Zp. This ring
can be obtained in a variety of ways. For example, one can take an analytic approach by putting a metric on Q and
developing the theory from there. (For those interested Neil Koblitz has a accessible introduction)

This is all very well and good, and is a good de�nition to work with as it makes certain computations convenient.
On the other hand, it is not immediately obvious (to me) why the process is called completion.

Topological Definition

Let {mi} be a descending �ltration. We can topologize R as follows. Take B := {x+ mi : x ∈ R, i ≥ 0} as a basis
for a topology. This works because every element of R is in some basis element, and if y ∈ (u + mi) ∩ (v + mj) then
with i ≤ j then y = u+mi = v +mj . As j ≥ i we have mj ∈ mi so that u+mi −mj = v or that u+ mi = v + mi.
That is,

v + mj ⊆ v + mi = u+ mi

So y ∈ v + mj ⊆ (u+ mi) ∩ (v + mj). So B can be used as a basis for a topology in the usual sense. That is, a set
U is open if for all u ∈ U there is some b ∈ B such that u ∈ b ⊆ U . Equivalently, the open sets of the topology are all
unions of elements of B. So we have a topology, which we call the mi topology. In fact, we have more. I claim that
addition and multiplication are continuous in the mi topology. For exampled let A : R × R → R be addition. Now
let U be an open set and suppose that a+ b = c ∈ U . Choose some basis element, x+ mi such that x+ mi ⊆ U and
c ∈ x+mi. Then we have x+mi = c+mi. I claim that, (a+mi)× (b+mi) ⊆ A−1(U). This is because if u, v ∈ mi then
(a+ v) + (b+u) = a+ b+ (v+u) = c+ (v+u) ∈ c+mi ⊆ U . This shows that every element of A−1(U) is contained in
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a open set contained in A−1(U) itself, which means A−1(U) is open and so A is continuous. Multiplication is handled
in a similar manner. So we have a topological ring.

De�nition. Let {xn} be a sequence of elements of R. We say that the sequence is Cauchy if for all open sets U
there is some N such that for n,m ≥ N we have xn − xm ∈ U . We say that the sequence converges to 0 if given any
neighborhood of 0 there is some N such that for all n ≥ N we have xn ∈ U .

We say that two Cauchy sequences (xn) and (yn) are equivalent if xn − yn converges to 0. This is easily seen to be

an equivalence relation. We now let R̂ be the set of all equivalence classes of Cauchy sequences.Now, given Cauchy
sequences xn, yn we have that xn + yn is Cauchy, and so is the product xnyn. For example, if we wanted to prove this
for multiplication it su�ces to check for basis elements containing 0 which are of the form mi for some i. Then in this
case, for large n,m we have xn − xm, yn − ym ∈ mi. Since mi is an ideal we have

xnyn − xmym = xnyn + xnym − xnym − xmym = xn(yn − ym) + ym(xn − xm) ∈ mi

Addition is handled in a similar manner. Now let xn , yn be two equivalence classes. We de�ne xn + yn = xn + yn
and xn · yn = xnyn. This is well de�ned up to equivalence as if xn ∼ un, yn ∼ vn then we have xn + yn − un − vn =
(xn − un) + (yn − vn). Now given a neighborhood of 0 say U . U contains a basis element containing 0 which is of
the form mi for suitable i. Then for large enough n,m we have (xn − un), (yn − vn) ∈ mi. But since the mi are
ideals so is the sum. The proof that multiplication is well de�ned up to equivalence is similar. Use the identity

xnyn − vnun = xn(yn − vn) + vn(xn − un). It easily follows that R̂ is a ring with unity. Notice that this set up
generalizes the usual completion seen in analysis, and so it seems believe able that the ring of equivalence classes with
the above operations deserves the name completion.

Putting the definitions together

It remains to show that the two de�nitions are the same. Momentarily put E as the ring of equivalence classes
de�ned above. De�ne ϕ : limR/mi → E by

ϕ((xi + mi)) = (xi)

To see that (xi) is Cauchy, it su�ces to check the Cauchy condition on basis elements. Given an basis element
containing 0 say mi we have that if n ≥ m ≥ i then xn − xm ∈ mm ⊆ mi by the condition on the inverse limit.
Furthermore, if (xi + mi) = (yi + mi) then the sequence xi − yi clearly converges to 0 as given a basis element
mk then for i ≥ k we have xi − yi ∈ mi ⊆ mk. So ϕ is well de�ned on equivalence classes, and is immediately a
homomorphism.(For example, (1 + mi) 7→ (1)i which is the multiplicative identity) It remains to show that it is a
bijection. Now ϕ((xi + mi)) = 0 means that (xi) is equivalent to the zero equivalence relation. So given mi there is
some N such that for all j ≥ N we have xj ∈ mi. But then, 0 ≡ xj ≡ xi mod mi so that (xi+mi) = (mi). So we know
that ϕ is an injection. On the otherhand, given a equivalence class represented by (xi) for each i there is some integer
ti ≥ i such that for m,n ≥ ti we have xn − xm ∈ mi. Now consider (xti). I claim that (xti) is a Cauchy sequence.
Consider a basis element mi . Then for j ≥ ti we have tj ≥ j ≥ ti so that if k ≥ j ≥ ti we have xtk − xtj ∈ mi . So
(xti) is a Cauchy sequence. I further claim that (xti) is equivalent to (xi). To see why, given mi we have that for j ≥ ti
that tj ≥ ti so that xtj −xj ∈ mi so that (xtj ) is equivalent to (xj). Finally, if j ≥ i then tj ≥ ti so that xtj −xti ∈ mi

by construction. So (xti + mi) is a element of R̂. Hence, ϕ(xti + mi) = (xti) and so ϕ is a surjection as desired.

Properties of completion

Now that we have the completion we want to know some things about it. Since we are dealing with �ltrations it
would be nice to obtain a related �ltration in the completion, this is not di�cult. We can form ideals in the completion,

namely m̂i := {(xi) ∈ R̂{mi} : xj = 0 for j ≤ i} . Because we are working in a subring of the product, this is an ideal,
and is decreasing with i. So we obtain a �ltration on the new space. How are the �ltrations related?

Proposition. R̂{mi}/m̂i
∼= R/mi.

Proof: De�ne p : R̂{mi}/m̂i → R/mi as follows. Let (xn) + m̂i be given. We de�ne p((xn) + m̂i) = xi + mi. This
is well de�ned, because if (xj) ≡ (yj) mod m̂i then in particular we have xi ≡ yi mod mi. The map is surjective

because given r+mi consider the element, (r+mn). We can then map to R̂{mi}/m̂i and then project down to get the
desired element. Finally, if p((xn) + m̂i) = 0 then xi ≡ 0 mod mi. But this forces all the xj = 0 mod mj for j ≤ i so
that (xn) = 0 in R̂{mi}/m̂i. So we have an isomorphism.

Note. If mi = mi is our �ltration the completion will be written R̂m and m̂1 := m̂.

Proposition. Suppose that m is a maximal ideal, and we take a �ltration mi = mi. Then R̂m is a local ring with

maximal ideal m̂.
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Proof: By the previous proposition, m̂ is maximal, so it remains to show that it is local. Now take (xn) /∈ m̂. Then
x1 6= 0 mod m. This means that for i ≥ 1 we we have xi 6= 0 mod mi. Now, notice that R/mi is local with maximal
ideal m(R/mi). Since xi 6= 0 mod m we have that xi /∈ m(R/mi) so that xi is a unit in R/mi. The result will now
follow if we can show that (x−1i )i is a element of the inverse limit. But this is easy as if j ≥ i then xi ≡ xj mod mi

so that by multiplying by the inverses gives x−1i ≡ x−1j mod mi. So we have the result.

We even get more from from the above. Notice, that R/mi ∼= Rm/m
i
m as R/mi is local with maximal ideal m/mi.

So, if we localize at the maximal ideal, mm and then complete, we still get back to the same ring as all the factors in
the direct limit are the same. We now turn to the classical example.

Proposition. Let S be a ring and R = S[x1, ...., xn] and m = (x1, ..., xn). Then R̂m
∼= S[[x1, ..., xn]]

Proof: De�ne ϕ : k[[x1, ..., xn]] → R̂m by ϕ(f) = (f + mn)n. This gives a well de�ned map into the inverse limit.
To see it is injective, note that if f is a non zero constant, then ϕ(f) 6= 0. So if ϕ(f) = 0 then f = 0 or is a not a
constant. If f is not constant, let i be the least degree of monomials that appear in f . Then f + mi+1 6= mi+1 so
ϕ(f) 6= 0 and so ϕ is injective. On the other hand,let f = (fi + mi)i be an element of the inverse limit. Then we can
write f = (gi + mi)i where gi only has monomials of degree ≤ i− 1. Then, consider the element

h = g1 + (g2 − g1) + (g3 − g2) + ...

h is a well de�ned element of S[[x1, ..., xn]] since gi+1−gi only contains terms of degree i since gi+1−gi = 0 mod mi

and gi, gi+1 terms of degree at most i−1, and i respectively. In this case we have g1 +(g2−g1)+ .... mod mi = gi +mi

because for j > i we have gj − gj−1 contains monomials of degree j − 1 ≥ i so that these terms vanish. In this case,
the rest of the terms telescope to gi. So we have ϕ(h) = (gi + mi) = f so that ϕ is surjective.

Corollary. If k is a �eld then k[[x1, ..., xn]] is a local ring with maximal ideal m̂ = k[[x1, ..., xn]](x1, ...., xn)

Proof: m is a maximal in this case, apply the above proposition.

Remark. This is a easy proof of the familiar fact that if a power series over say C has a non-zero constant term, then
it can be inverted formally. Of course one can show this by solving systems of equations.

De�nition. Let φ̂ : R→ R̂{mi} be the map that sends x 7→ (x+mi)i. We call this map the natural map, and we say
R is complete with respect to the mi if the map is an isomorphism.

Remark. It is immediate that ker φ̂ = ∩∞i=1mi

The above is obvious from the de�nition of R̂. We see that the intersection of a �ltration of ideals corresponds to
the information lost when passing to the completion. So for example, if R is noetherian and a domain, or local no
information is lost by Krull's Intersection Theorem.

Proposition. R is Hausdor� as a topological space if and only if ker φ̂ = {0}

Proof: Suppose that R is Hausdor�. If R = 0 then were done. Towards a contradiction, suppose that x 6= 0 and
x ∈ ∩i≥1mi. Then as R is Hausdor� and x 6= 0 there are disjoint basis elements y + mi and z + mj with x ∈ y + mi

and 0 ∈ z + mj . But then we have y + mi = x+ mi and z + mj = mj . But, x ∈ mi so x+ mi = mi. But mi ∩mj 6= ∅
which is a contradiction. Conversely, suppose that ker φ̂ = {0}. Let x 6= y . So x − y /∈ ∩i≥1mi. So there is some i
with x− y /∈ mi. This means that x+ mi and y + mi are disjoint which gives us that R is Hausdor�.

Remark. Now, up until this point we have more or less used the algebraic de�nition to do things, but the topological

descriptions is also useful. One way we can write a element of R̂ is as follows. Set Sn =
∑n

i=1 si with si ∈ mi. Then
the sequences (Sn) is a Cauchy sequence because if m ≥ n we have Sm − Sn =

∑m
i=n+1 si ∈ mn+1.

Proposition. Let R be complete being respect to m. Then the elements of U = {1 + a : a ∈ m} are units.

Proof: Identify R with its completion. Given, 1 + a, a ∈ m set Sn =
∑n

i=0(−1)iai. Then, this is a Cauchy
sequence by the above remarks. Now, consider (1 + a)

∑∞
i=0(−1)iai. Using the Cauchy sequence de�nition, we have

that (1 + a)Sn =
∑n

i=0(−1)iai +
∑n

i=0(−1)iai+1 = 1 + (−1)nan+1. Now consider the sequence (1 + (−1)nan+1) =
(1) + ((−1)nan+1). Since, (−1)nan+1) is equivalent to 0 as a ∈ m. We have that (1 + (−1)nan+1) = 1. So 1 + a is a
unit.

Proposition. Let R be a local ring with maximal ideal m. Then R[[x1, ..., xn]] is local with maximal ideal m +
(x1, ..., xn).

Proof: We can work in R̂m which is complete with respect to m. Let f be a element outside m + (x1, ..., xn). Then
if f0 is the constant term of f we have that f0 /∈ m and so f0 is a unit of R. This means that f−10 f = 1 + g where

g ∈ (x1, ..., xn) so that 1 + g is a unit by the above proposition. But this means that f is a unit and so R̂m is local
with maximal ideal m + (x1, ..., xn)

Finally, one may ask whether the completion behaves nicely in certain ways if the original ring. To this end we
develop abit of machinery.This is a second application of convergence type thinking, that also is an example of the
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running theme. That passing to the associated construction can tell us things about the original ring in suitable
circumstances.

Lemma. Let R be a ring and mi a �ltration of ideals. Then given f, g ∈ R we have in(fg) = in(f)in(g) or

in(f)in(g) = 0 in grR.

Proof: Suppose that deg in(f) = p and deg in(g) = q. Let p ≥ q. Now, suppose that in(f)in(g) 6= 0. Then we
know that fg+mp+q+1 6= 0 because this is product in(f)in(f). In this case we have that fg /∈ mp+q+1 but, fg ∈ mp+q

certainly. Hence, in(fg) is the image of fg in mp+q/mp+q+1 which is exactly what we want.

Proposition. Let R be complete with respect to a �ltration {mi}. Suppose that I is an ideal. If a1, ..., as ∈ I and

in(a1), ..., in(as) generate in(I) then a1, ...., as generate I.

Proof: Since R is complete with respect to the �ltration φ̂ has trivial kernel. This means that ∩i≥1mi = {0}. So
we may choose d so that ai /∈ md for 1 ≤ i ≤ s. Now, identify R with its completion. Let f ∈ I. Then we can regard
in(f) in gr{mi}R. Suppose that f has degree e. (Meaning in(f) has degree e in the graded ring) So in(f) = f +me+1

and we can write in(f) =
∑s

j=1Gjin(aj) where Gj are homogenous of degree deg(in(f)) − deg(in(aj)). We can

assume that the Gjin(aj) are non zero and so choose some gj ∈ R such that in(gj) = Gj . In this case we know that
in(gj)in(aj) = in(gjaj) by the above lemma so that f−

∑s
j=1 in(gj)in(aj) ∈ me+1. Now look at f−

∑s
j=1 in(gj)in(aj)

in me+1 and apply the same logic. At each step, we move up a degree so that eventually we obtain an element g such
that f − g ∈ f − g ∈ md+1. Furthermore, in this situation, we have that the elements gj computed above must have
degree at most e−d > 0 and so must live in me−d . Now apply the same procedure to f −

∑s
j=1 gjaj which has degree

at least d+ 1 to obtain f −
∑s

j=1 gjaj −
∑s

j=1 g
1
jaj ∈ md+2 such that g1j ∈ me−d+1 for each j. Now iterate this process

to obtain a sequence gij for 1 ≤ j ≤ s with gij ∈ me−d+i and f −
∑i

k=0

∑s
j=1 g

k
j aj ∈ md+i+1 . Now for �xed j we have

that the partial sums of {gij}i is a Cauchy sequence. Furthermore we know that the sum of the sequences formed by

the partial sums of the gijaj are converging to f . This means that if Aj is the limit of the Cauchy sequence gij then

f =
∑s

j=1Ajaj and so the ai generate I as desired.

We now have the technology to prove that in the Noetherian case R̂ inherits certain nice properties from R.

Theorem. Let R be Noetherian and m an ideal then we have

• R̂m is noetherian.
• R̂m/m

jR̂m
∼= R/mj and so R̂m is complete with respect to mR̂m.

• grmR ∼= grmR̂m
R̂m.

Proof: If we look back at our earlier work we see that grmR ∼= grm̂i
R̂ because R̂{mi}/m̂i

∼= R/mi. Furthermore, since

R is noetherian we know that grmR is noetherian by an earlier remark. Now let I be an ideal of R̂m. We know that

R̂m is complete with respect to the m̂i. So we know that grm̂i
R̂ is noetherian, and in grm̂R̂ we have that in(I) is

�nitely generated. But then by the above proposition, we know that I is �nitely generated in R̂m which means that

R̂m is noetherian as desired. First, notice that m̂n := {(xi + mi) : xi ∈ mi for i ≤ n}. So consider the initial ideal

in(m̂n) inside grm̂R̂m which is all elements with degree k ≥ n. On the otherhand, in(mnR̂m) is again all elements

in grm̂R̂m of degree k ≥ n. Since we know that R̂m is complete with respect to the m̂i can apply our earlier results.

Since R̂m is noetherian, we know that grm̂R̂m is noetherian, and so in(m̂n) = in(mnR̂m) is �nitely generated by some

elements. But then the proposition above kicks in and we have that the same elements generate m̂n and mnR̂m. So

they are the same. That is, mnR̂m = m̂n and so by our earlier work we know that R/mn ∼= R̂m/m̂n = R̂m/m
nR̂m.

This gives the second bullet point. Finally, since mnR̂m = m̂n we have that grmnR̂m
R̂m = grm̂R̂m

∼= grmR.

Remark. So we see that like taking the graded ring, completion behaves well with respect to the Noetherian hypothesis.

Looking Back. We have seen that when given a �ltration of ideals, or perhaps more generally of submodules there are
a number of ways one can construct related objects that can provide valuable information. The graded constructions
provide information about �ltration of ideals and submodules. We also looked at completion and rings complete with
respect to some �ltration of ideals. In this case we saw that completion inherits the Noetherian hypothesis from the
original ring, and that questions about �nite generation of ideals in complete rings can sometimes be solved by passing
to the associated graded ring.

Looking Forward. I would be remiss to speak about completion and not mention certain facts that we did not have

time to discuss.One important property is that R̂m is �at as a R module. In general one can de�ne the completion of

modules as an inverse limit. Namely M̂ := lim
←
M/mjM for some ideal m. If we have a Noetherian ring and a �nitely

generated R module M then completion of modules can be related to the tensor product and in fact M̂m
∼= R̂m⊗RM .

Complete rings also satisfy Hensel's lemma which is very useful. Hensel's Lemma is as follows. Let R be a noetherian
ring and suppose that m is a proper ideal with R complete with respect to m. Let f ∈ R[x]. If f(a) ≡ 0 mod f ′(a)2m
then there is some b with f(b) = 0 and b ≡ a mod f ′(a)m. That is, if a is a approximate root of f with respect to m
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there is some actual root lying close to a mod m. Furthermore, if f ′(a) is a non zero divisor then b is unique. Hensel's
Lemma can be thought of an algebraic version of Newton's method. For example, Hensel's Lemma has a number of
applications in the theory of p adic numbers. Finally, in the case of �nitely generated modules over Noetherian local
rings the theory of completion behaves very well. Speci�cally, ifM,N are �nitely generated modules over a Noetherian

Local ring then M̂ ∼= N̂ ⇒ M ∼= N . So in this case, by looking at the completion, which has nice properties as we
have seen above, one can answer whether two modules are isomorphic.

References.

• David Eisenbud: Commutative Algebra with a view Towards Algebraic Geometry.
• M.F. Atiyah and I.G. McDonald: Introduction to Commutative Algebra.


