
Results on chain complex's: The notes basically follow Rotman Advanced
Modern Algebra, chapter 10 on Homology.

De�nition: A chain map f• : A• → B• is null homotopic if there are maps
sn : An → Bn+1 such that fn = sn−1dn + d′n+1sn. In diagrams

// An+1

dn+1 //

fn+1

��

An
dn //

fn

��

sn

||

An−1

fn−1

��

//

sn−1

||
// Bn+1

d′n+1

// Bn
d′n

// Bn−1 //

We say that chain maps f, g are homotopic if f − g is null homotopic and
write f ∼ g.

This idea comes from algebraic topology. I do not know much about the
�eld, but the little I know suggests that this intuitively means that the maps f
and g can be �continuously� deformed into the same thing.

Proposition: Let f•, g• be chain maps from C• → B• with f ∼ g. Then
Hn(f•) = Hn(g•).

Proof: To remind ourselves, we have the following diagram.

// An+1

dn+1 //

fn+1

��

An
dn //

fn

��

sn

||

An−1

fn−1

��

//

sn−1

||
// Bn+1

d′n+1

// Bn
d′n

// Bn−1 //

Let zn be an n− cycle. Note that, dnzn = 0 by the de�nition of n cycle. So
plugging into our formula gives

fnzn − gnzn = d′n+1snzn + sn−1dnzn = d′n+1snzn ∈ Bn(B•)

That is, moduloBn(B•) we have fn = gn. But this is precisely the statement
that Hn(f•) = Hn(g•).

Prop: Let C• be contractible, or that the identity chain map 1C• is null
homotopic. Then C• is acyclic. (exact)
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Proof: We have

// An+1

dn+1 //

1n+1

��

An
dn //

1n

��

sn

||

An−1

1n−1

��

//

sn−1

||
// An+1

dn+1

// An
dn

// An−1 //

Let zn be an n cycle. We have to show that zn in the boundary n boundary.
We know that 1n = sn−1dn + dn+1sn. Then as dnzn = 0 we have

zn = sn−1dnzn + dn+1snzn = dn+1snzn ∈ Bn(B•)

This shows that Bn(A•) = Zn(A•) or that A• is acyclic.

A sequence of complex's A•
i•→ B•

p•→ C• is exact if for all n we have

imin = ker pn

This is compact notation, note that this is really a huge diagram!

�� �� ��
// An+1

dn+1

//

in+1

��

An
dn

//

in

��

An−1

in−1

��

//

// Bn+1
d′n+1

//

pn+1

��

Bn
d′n

//

pn

��

Bn−1 //

pn−1

��
// Cn+1

d′′n+1

//

��

Cn
d′′n

//

��

Cn−1 //

��

Connecting Homomorphism

Suppose that we have a short exact sequence of complexes.

0• → C ′•
i•→ C•

p•→ C ′′• → 0•

Then for all n we have a homomorphism

∂n : Hn(C
′′
• ) → Hn−1(C

′
•)
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given by

∂n(zn +BnC
′′) = i−1n−1dnp

−1
n zn +Bn(C

′)

(The lifting here is ambiguous, but it turns out that such a choice is unique)
This is just a diagram chase. It is routine. In all honesty, I have found reading

diagram chases to be pointless without doing them. In my own experience, these
things become transparent when you just do them. The proof is in Rotman in
any case.

Long Exact Sequence

Let

0• → C ′•
i•→ C•

p•→ C ′′• → 0•

be a exact sequence of complexes. Then there is a long exact sequence

→ Hn+1(C
′′
• )

∂n+1→ Hn(C
′
•)

i∗→ Hn(C•)
p∗→ Hn(C

′′
• )

∂n→ Hn−1(C
′
•)→

Proof:Its a diagram chase. As before the proof is in Rotman.
This gives a nice commutative diagram

Hn(C
′
•)

i∗

%%
Hn(C

′′
• )

∂

OO

Hn(C•)p∗
oo

Lets talk about Ext baby

We start with a de�nition.
De�nition: Let M be an R module and let

.... → P2 → P1
d1→ P0 →M

be a projective resolution.
The Corresponding deleted projective resolution of M is

....→ P2 → P1
d1→ P0 → 0

We can always recover M from the deleted projective resolution since M ∼=
cokerd1.
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De�nition: Let M and N be R modules and take a deleted projective reso-
lution of M say P. Now apply the contra variant hom functor HomR(−, N) to
reverse all the arrows for P. So we get

0→ hom(P0, N)→ hom(P1, N)→ ...

But this does not really change anything. The standard convention is to use
super scripts now as the indexing is increasing.

Then we de�ne

ExtnR(M,N) = Hn(homR(P, N))

We still need to check that this is independent of choice of projective reso-
lution! However, it is independent of the injective resolutions and in fact and
di�erent resolutions give naturally isomorphic results.

We now run through some results about Ext.
But �rst, a lemma.
If

A
i→ B

p→ C → 0

is an exact sequence of R modules. Then given an R module D we have that
that

0→ hom(A,D)
i∗→ hom(B,D)

p∗→ hom(C,D)

is also an exact sequence. In fact the above can be strengthened to be an if
and only if. The proof can be found in say Hungerfords algebra along with sim-
ilar statements. In fact he has a whole section on hom and projective/injective
modules which is pretty good.

Prop: What is Ext0R(M,N) ∼= homR(M,N).
Pf: By de�nition, we know that Ext0R(M,N) = H0(homR(P, N))
Now take a projective resolution and look at the end

P1
d1→ P0

d0→M → 0

Taking homs gives

0→ hom(M,N)
d∗0→ hom(P0, N)

d∗1→ hom(P1, N)

By the above lemma we have that the sequence is exact. The sequence we
are interested in is

0→ hom(P0, N)
d∗1→ hom(P1, N)→ ...
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So Ext0R(M,N) ∼= ker d∗1. But by the exactness of the �rst sequence we have
that

ker d∗1 = imd∗0
∼= hom(M,N)

Lemma: Horseshoe Lemma: Given a diagram with the bottom row exact
and columns projective resolutions

�� ��
P ′1

��

P ′′1

��
P ′0

ε′

��

P ′′0

ε′′

��
0 // A′

i
// A

p
// A′′ //// 0

There is a projective resolution of A and chain maps so the above diagram
can be completed to a exact sequence of chain maps.

Proof: Put P0 := P ′0 ⊕P ′′0 . Since sums of projective modules are projective,
P0 is projective. Let i0 be the canonical injection P

′
0 → P0 and p0 the canonical

projection from P0 to P ′′0 .
So we get an exact sequence

0→ P ′0 → P0 → P ′′0 → 0

Now, as P ′′0 is projective there is some f : P ′′0 → A with ε′′ = pf . So if π′, π′′

are the canonical projections of P0 we can de�ne ε : P0 → A by

ε = iε′π′ + fπ′′

Now set K ′0 = ker ε′, K ′′0 = ker ε′′ and K0 = ker ε. So we obtain a diagram

0

��

0

��

0

��
0 // K ′0

��

// K0
//

��

K ′′0

��

// 0

0 // P ′0

ε′

��

i0
// P0

ε

��

p0
// P ′′0

ε′′

��

// 0

0 // A′
i
//

��

A
p
//

��

A′′ ////

��

0

0 0 0
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Where the top row is given by the maps that come from the snake lemma.
Now, by the 3 lemma or by the long exact sequence the whole thing must be
exact.

We now show by induction how to proceed on the diagram below. Note,
that we have shown that we can construct the �rst step up in the projective
resolution of A.

Now suppose that we have the �rst n rows �lled up. Put Kn := ker(Pn →
Pn−1) and de�ne K ′n and K ′′n in the obvious way. So we obtain a new 3 × 3
diagram

0

��

0

��

0

��
0 // K ′n

��

// Kn
//

��

K ′′n

��

// 0

0 // P ′n

��

// Pn

��

// P ′′n

��

// 0

0 // P ′n−1 //

��

Pn−1 //

��

P ′′n−1 //

��

0

0 0 0

Now that since the two rows on the left and right of the diagram are exact,
that the map P ′n+1 → P ′n factors through K ′n that makes everything commute,
and similarly with P ′′n+1 → P ′′n and K ′′n . De�ne Pn+1 := P ′n+1 ⊕ P ′′n+1 and
mimic what we did above with the original diagram to obtain a new diagram
that commutes and has exact rows
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0 // K ′n+1

##

// Kn+1
//

##

K ′′n+1

##

// 0

0 // P ′n+1
//

��

{{

Pn+1

��

//

{{

P ′′n+1
//

{{

0

0 // K ′n

##

// Kn
//

##

K ′′n

##

// 0

0 // P ′n //

��

Pn

��

// P ′′n //

��

0

0 // P ′n−1 // Pn−1 // P ′′n−1 // 0

What happens to exact sequences under Ext?
Suppose that we have an exact sequence of modules.

0→ A
i→ B

p→ C → 0

Then there is an exact sequence

0→ hom(C,N)→ hom(B,N)→ hom(A,N)→ Ext1R(C,N)→ Ext1R(B,N)→ Ext1R(A,N)→ ...

Proof: Let P ′and P ′′ be projective resolutions of A,C respectively.
By the Horseshoe lemma, we can construct a projective resolution P of A

and chain maps to make the following diagram commute.

�� �� ��
0 // P ′1

��

// P1

��

// P ′′1

��

// 0

0 // P ′0

ε′

��

// P0

ε

��

// P ′′0

ε′′

��

// 0

0 // A
i
// B

p
// C //// 0
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Now take the deleted resolutions

�� �� ��
0 // P ′2

��

// P2

��

// P ′′2

��

// 0

0 // P ′1

��

// P1

��

// P ′′1

��

// 0

0 // P ′0

��

// P0

��

// P ′′0

��

// 0

0 0 0

The rows still remain exact, since everything is projective we can take hom
to obtain a new exact sequence of chain complex.

0 hom(P ′2, N)

OO

oo hom(P2, N)

OO

oo hom(P ′′2 , N)

OO

oo 0oo

0 hom(P ′1, N)

OO

oo hom(P1, N)

OO

oo hom(P ′′1 , N)

OO

oo 0oo

0 hom(P ′0, N)

OO

oo hom(P0, N)

OO

oo hom(P ′′0 , N)

OO

oo 0oo

0

OO

0

OO

0

OO

Now, take the long exact sequence to obtain a map

→ ExtnR(A,N)→ Extn+1
R (C,N)→ Extn+1

R (B,N)→ Extn+1
R (A,N)→ Extn+2

R (C,N)→

If we start at the beginning we obtain

0→ hom(C,N)→ hom(B,N)→ hom(A,N)→ Ext1R(C,N)→ Ext1R(B,N)→ Ext1R(A,N)→ ...
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