Combinatorial Nullstellensatz

Brad R. Jones

December 9, 2013

Abstract

The Combinatorial Nullstellensatz is a theorem about the roots of a polynomial. It is related to Hilbert's Nullstellensatz. Established in 1996 by Alon et al. [4] and generalized in 1999 by Alon [2], the Combinatorial Nullstellensatz is a powerful tool that allows the use of polynomials to solve problems in number theory and graph theory. This article introduces the Combinatorial Nullstellensatz, along with a proof and some of its applications. We also compare the Combinatorial Nullstellensatz to Hilbert's Nullstellensatz.

1 Introduction

The Combinatorial Nullstellensatz was first proved for fields of prime characteristic in 1996 by Alon et al. [4] and generalized to arbitrary fields and named in 1999 by Alon [2]. The Combinatorial Nullstellensatz is a pair of theorems. Theorem 1.1 resembles Hilbert's Nullstellensatz (see Theorem 3.1) and Theorem 1.2, which is also called the "Nonvanishing Theorem" [14], is a useful tool that bounds the number of roots of a multivariate polynomial.

Theorem 1.1 (Combinatorial Nullstellensatz I [2]). Let F be a field and $f \in F[\lambda_1, \ldots, \lambda_n]$. Let S_1, \ldots, S_n be nonempty finite subsets of F.

Define $g_i = \prod_{s \in S_i} (\lambda_i - s)$.

If $f(s_1, \ldots, s_n) = 0$ for all $s_i \in S_i$ then there exists $h_1, \ldots, h_n \in F[\lambda_1, \ldots, \lambda_n]$ with $\deg(h_i) \leq \deg(f) - \deg(g_i)$ such that:

$$f = \sum_{i=1}^{n} h_i g_i.$$

If $f, g_1, \ldots, g_n \in R[\lambda_1, \ldots, \lambda_n]$ for some subring, $R \subseteq F$, then we can find such $h_i \in R[\lambda_1, \ldots, \lambda_n]$.

Theorem 1.2 (Combinatorial Nullstellensatz II [2]). Let F be a field and $f \in F[\lambda_1, \ldots, \lambda_n]$.

Suppose $\deg(f) = \sum_{i=1}^n t_i$ for some nonnegative integers, t_i , and the coefficient of $\prod_{i=1}^n \lambda_i^{t_i}$ is nonzero. If $S_1, \ldots, S_n \subseteq F$ such that $|S_i| > t_i$ then there exists $s_1 \in S_1, \ldots, s_n \in S_n$ such that:

$$f(s_1,\ldots,s_n)\neq 0.$$

The Combinatorial Nullstellensatz has many applications. In his 1999 article [2], Alon gave applications for sumsets, the permanent lemma, extremal graph theory and list coloring of graphs. Later applications were done for sumsets [3, 16], sequences [14, 17], probabilistically checkable proofs [7], graph labellings [12] and zero flow in graphs [1].

In this paper we start with an outline of the original proof of the Combinatorial Nullstellensatz, next we give a comparison to Hilbert's Nullstellensatz and finally we investigate three examples of using the Combinatorial Nullstellensatz.

2 Proof of the Combinatorial Nullstellensatz

We shall present the original proof by Alon [2]. To prove the two theorems of the Combinatorial Nullstellensatz we need the following lemma. This lemma is powerful by itself and has been utilized in [9].

Lemma 2.1. Let F be a field and $f \in F[\lambda_1, \ldots, \lambda_n]$.

Suppose the degree of λ_i in f is less than t_i for all $1 \le i \le n$ and $S_i \subseteq F$ are such that $|S_i| \ge t_{i+1} + 1$.

If
$$f(s_1, \ldots, s_n) = 0$$
 for all $s_1 \in S_1, \ldots, s_n \in S_n$ then $f = 0$.

Proof. We shall proceed by induction on n.

If n=1 then the statement is merely the fundamental theorem of algebra.

If n > 1 then for $f \in F[\lambda_1, \dots, \lambda_n]$ and $S_i \subseteq F$, write f as

$$f = \sum_{i=0}^{t_n} f_i(\lambda_1, \dots, \lambda_{n-1}) \lambda_i,$$

where $f_i \in F[\lambda_1, \dots, \lambda_{n-1}]$ such that λ_j in each f_i has degree at most t_j .

For $s_1 \in S_1, \ldots, s_{n-1} \in S_{n-1}$, the polynomial, $Q = f(s_1, \ldots, s_{n-1}, \lambda_n) \in F[\lambda_n]$, equals zero for all $\lambda_n = s_n \in S_n$ and thus Q = 0. Therefore $f_i(s_1, \ldots, s_{n-1}) = 0$ for all $s_1 \in S_1, \ldots, s_{n-1} \in S_{n-1}$. Thus by the inductive hypothesis, $f_i = 0$ for all i and so i and i and so i and i a

Now we shall prove the Combinatorial Nullstellensatz.

Proof of Combinatorial Nullstellensatz I. Suppose $f \in F[\lambda_1, \ldots, \lambda_n]$ and $S_1, \ldots, S_n \subseteq F$ are as in the hypothesis of Theorem 1.1.

Let $t_i = |S_i| - 1$ and

$$g_i = \prod_{s_i \in S_i} (\lambda_i - s_i) = \lambda_i^{t_i + 1} - \sum_{j=0}^{t_i} g_{ij} \lambda_i^j$$

for each i.

For $p \in F[\lambda_1, ..., \lambda_n]$ define $[\lambda_i^j]p$ be the coefficient of λ_i^j as a polynomial in $F[\lambda_1, ..., \lambda_{i-1}, \lambda_{i+1}, ..., \lambda_n]$. Consider the recurrence relation:

$$f_{1,1} = f$$

$$f_{i+1,1} = f_{i,\deg_i(f)+1} \qquad \forall i \ge 1$$

$$f_{i,j+1} = f_{i,j} - \left(\sum_{t=0}^{\deg_i(f_{i,j}) - t_i} (\lambda_i^t) [\lambda_i^{t+t_i}] f_{i,j}\right) g_i \qquad \forall i, j \ge 1$$
(2.1)

where $\deg_i(y)$ is the degree of λ_i in $y \in F[\lambda_1, \dots, \lambda_n]$. Let

$$h_i = \sum_{j=1}^{\deg_i(f)+1} \left(\sum_{t=0}^{\deg_i(f_{i,j})-t_i} \left([\lambda_i^{t+t_i}] f_{i,j} \right) \lambda_i^t \right)$$

and

$$\bar{f} = f_{n,\deg_{\bar{\epsilon}}(f)+1}.$$

Note that h has degree at most deg f – deg g_i and the coefficients of h are in the smallest ring containing the coefficients of g_i and f. Also $f - \sum_{i=1}^n g_i h_i = \bar{f}$. Since for all $i, j, f_{i,j}(s_1, \ldots, s_n) = 0$ for all $s_i \in S_i$ it follows that $\bar{f}(s_1, \ldots, s_n) = 0$ for all $s_i \in S_i$.

For each $i, j \geq 1$, $\deg_i(f_{i,j+1}) < \max\{t_i + 1, \deg_i(f_{i,j})\}$ and thus $\deg_i(f_{i,\deg_i f + 1}) \leq \max\{t_i, \deg_i(f) - \deg_i(f) + 1\} = t_i$. Therefore $\deg_i(\bar{f}) \leq t_i$ for all i.

So by Lemma 2.1,
$$\bar{f} = 0$$
 and thus $f = \sum_{i=1}^{n} h_i g_i$.

A short proof of Theorem 1.2 was given by Michalek [13]; however we shall give the original proof, since we have the tools to do so.

Proof of Combinatorial Nullstellensatz II. Suppose $f \in F[\lambda_1, \ldots, \lambda_n], t_1, \ldots, t_n$ and $S_1, \ldots, S_n \subseteq F$ are as in the hypothesis of Theorem 1.1.

We may assume that $|S_i| = t_i + 1$.

Suppose for all $s_i \in S$, $f(s_1, \ldots, s_n) = 0$ and let $g_i = \sum_{s_i \in S_i} (\lambda_i - s_i)$. By Theorem 1.1 there exist $h_i \in F[\lambda_1, \ldots, \lambda_n]$ with $\deg(h_i) \leq \sum_{j=1}^n t_j - \deg g_i$ and $f = \sum_{i=1}^n h_i g_i$.

However every monomial of maximum degree in $h_j g_j = h_j \prod_{s_i \in S} (x_i - s_i)$ is divisible by $\lambda_j^{t_j+1}$. Therefore the monomials of $\deg(f)$ in $f = \sum_{i=1}^n h_i g_i$ are divisible by $\lambda_j^{t_j+1}$ for some j. Therefore the coefficient of $\prod_{i=1}^n \lambda_i^{t_i}$ in f is zero, but this was assumed false in the hypothesis of the theorem giving a contradiction. \square

3 Comparison to Hilbert's Nullstellensatz

The Combinatorial Nullstellensatz gets its name from the similar Hilbert's Nullstellensatz.

Theorem 3.1 (Hilbert's Nullstellensatz [11]). Let F be an algebraically closed field, $f \in F[\lambda_1, \ldots, \lambda_n]$ and I be an ideal of $F[\lambda_1, \ldots, \lambda_n]$.

Define

$$S = \{(s_1, \dots, s_n) \in F^n : g(s_1, \dots, s_n) = 0 \,\forall g \in I\}.$$

If $f(s_1,\ldots,s_m)=0$ for all $(s_1,\ldots,s_n)\in S$ then

$$f^k \in I$$
,

for some $k \in \mathbb{N}^+$.

The importance of Hilbert's Nullstellensatz is that it implies the following foundational theorem in Algebraic Geometry.

Theorem 3.2 ([11]). Let F be an algebraically closed field. There is a one-to-one correspondence between the collection of radical ideals of $F[\lambda_1, \ldots, \lambda_n]$ and the collection of algebraic subsets of F^n .

The algebraic subsets of F^n are the subsets of the form $\{(s_1,\ldots,s_n)\in F^n: f(s_1,\ldots,s_n)=0\ \forall f\in I\}$ for some subset, $I\subseteq F[\lambda_1,\ldots,\lambda_n]$.

We include the proof to show the use of Hilbert's Nullstellensatz.

Proof. Take

$$i: S \mapsto \{f \in : f(s_1, \dots, s_n) = 0 \, \forall (s_1, \dots, s_n) \in S\}$$

and

$$\sigma: I \mapsto \{(s_1, \dots, s_n) \in F^n : f(s_1, \dots, s_n) = 0 \, \forall f \in I\}.$$

i maps into radical ideals because if i(S) is an ideal for all sets S and $f^k(s_1, \ldots, s_n) = 0$ then $f(s_1, \ldots, s_n) = 0$. σ maps into algebra sets by definition.

For S an algebraic subset of F^n , if $(s_1, \ldots, s_n) \in S$ then $f(s_1, \ldots, s_n) = 0$ for all $f \in i(S)$ and thus $(s_1, \ldots, s_n) \in \sigma(i(S))$. If $(s_1, \ldots, s_n) \in \sigma(i(S))$ then $f(s_1, \ldots, s_n) = 0$ for all $f \in i(S)$ and thus $(s_1, \ldots, s_n) \in S$. So σi fixes algebraic subsets of F^n .

For I a radical ideal of $F[\lambda_1, \ldots, \lambda_n]$, if $f \in I$ then $f(s_1, \ldots, s_n) = 0$ for all $(s_1, \ldots, s_n) \in \sigma(I)$ and thus $f \in i\sigma(I)$. If $f \in i\sigma(I)$ then $f(s_1, \ldots, s_n) = 0$ for all $(s_1, \ldots, s_n) \in \sigma(I)$ and by Hilbert's Nullstellensatz $f^k \in I$. Because I is radical $f \in I$. So $i\sigma$ fixes radical ideals. This result is sometimes called "Hilbert's Nullstellensatz" instead of Theorem 3.1 [6, 10, 15].

Therefore σ is a desired one-to-one correspondence.

If we take $I = \langle g_1, \dots, g_m \rangle$ in Hilbert's Nullstellensatz for some $m \in \mathbb{N}$ and $g_1, \dots, g_m \in F[\lambda_1, \dots, \lambda_n]$ then for $f \in F[\lambda_1, \dots, \lambda_n]$ satisfying the hypothesis of Hilbert's Nullstellensatz we get that $f^k \in \langle g_1, \dots, g_m \rangle$ for some $k \in \mathbb{N}^+$. In other words

$$f^k = \sum_{i=1}^m h_i g_i$$

for some $h_i \in F[\lambda_1, \dots, \lambda_n]$. This result looks very similar to the result of the Combinatorial Nullstellensatz I. If I is radical then we can get $f = \sum_{i=1}^m h_i g_i$.

The power of the Combinatorial Nullstellensatz is that it includes a bound on the degree of the h_i and the base field does not have to be algebraic closed. Since Hilbert's Nullstellensatz is merely a lemma for Theorem 3.2, those parts of the Nullstellensatz are unnecessary

The Combinatorial Nullstellensatz puts a restriction on the type of ideal allowed. We can see the Combinatorial Nullstellensatz as determining when $f \in \langle g_1, \ldots, g_n \rangle$, for specific types of g_i . Hilbert's Nullstellensatz puts no restriction on I. This is again because it is a lemma for Theorem 3.2 which at least needs the Nullstellensatz to work on radical ideals.

4 Applications of the Combinatorial Nullstellensatz

Now we shall look at how the Combinatorial Nullstellensatz can be used to solve various problems. We will investigate three examples: sum sets, list coloring and zero-sum flows in graphs. The first two examples are from Alon [2] and the latter example is due to Akbari et al. [1].

4.1 Sumsets

Given two subsets, A, B, of a ring R, their sum is the set, $A + B = \{a + b : a \in A, b \in B\}$. We may call A + B a sumset.

The following theorem of sumsets was proved in 1813 by Cauchy using induction and a combinatorial argument [2]. We shall instead use the Combinatorial Nullstellensatz in our proof, which comes from Alon [2].

Theorem 4.1. If p is prime and A, B are non empty subsets of \mathbb{Z}_p then

$$|A + B| > \min\{p, |A| + |B| - 1\}.$$

Proof. If |A| + |B| > p then for every $g \in \mathbb{Z}_p$, $A \cap (g - B) \neq \emptyset$ and so $A + B = \mathbb{Z}_p$.

Assume $|A| + |B| \le p$ and $|A + B| \le |A| + |B| - 2$.

Let $C \subseteq Z$ be such that $A+B \subset C$ and |C|=|A|+|B|-2 and define $f(x,y)=\prod_{c\in C}(x+y-c)$. Note that for all $a\in A,b\in B$: $f(a,b)=\prod_{c\in C}(a+b-c)=0$.

Since $x^{|A|-1}y|B|-1$ has the coefficient $\binom{|A|+|B|-2}{|A|-1}$, which is nonzero, and $\deg(f)=|C|=|A|+|B|-2$, if we take $t_1=|A|-1$, $t_2=|B|-1$, $S_1=A$ and $S_2=B$ then by the Combinatorial Nullstellensatz II there exists and $a\in A$ and $b\in B$ such that $f(a,b)\neq 0$, a contradiction.

4.2 List coloring

A graph is a pair, G = (V, E), where V is a finite set and E is a set whose elements are sets of two elements of V. Elements of V are called *vertices* and elements of E are called *edges*.

A proper coloring of a graph, G = (V, E), is function, $c : V \to \mathbb{Z}$ such that for all $\{v, w\} \in E$, $c(v) \neq c(w)$. A graph, G = (V, E), is k-colorable for $k \in \mathbb{N}$ if there exists a proper coloring, c, such that $|c(V)| \leq k$.

Let $f: V \to \mathbb{N}$. We say that G = (V, E) is f-choosable if for all $S: V \to \mathcal{P}(\mathbb{Z})$ with |S(x)| = f(v) there exists a proper coloring, c, such that for all $v \in V$, $c(v) \in S(v)$. A graph is k-choosable (or k-list colorable) for $k \in \mathbb{N}$ if G is κ -choosable, where $\kappa(v) = k$ for all $v \in V$.

Clearly a graph is k-colorable if it is k-choosable. An important question in graph theory asks if the converse is true [8].

We shall present a result about f-choosablility, first proved in 1992 by Alon and Tarsi [5]. First we give a few more definitions.

An orientation of a graph G=(V,E) is a set, $D\subseteq V\times V$, such that |D|=|E| and for each $(v,w)\in D$, $\{v,w\}\in E$. We call the outdegree in D of a vertex, $v\in V$, is $|\{(v,w)\in D\}|$. If $V=\{1,\ldots,n\}$ then we say the parity of D is the parity of $|\{(i,j)\in D:i< j\}|$. We define $\mathrm{DE}_G(d_1,\ldots,d_n)$ to be the number of even orientations of G with outdegrees, d_1,\ldots,d_n , of vertices $1,\ldots,n$ respectively and we define $\mathrm{DE}_G(d_1,\ldots,d_n)$ to be the number of odd orientations of G with outdegrees, d_1,\ldots,d_n , of vertices $1,\ldots,n$ respectively.

Theorem 4.2. Let $G = (\{1, 2, ..., n\}, E)$.

Let $f: \{1, 2, ..., n\} \to \mathbb{N}$ such that for some $\sum_{i=1}^{n} t_i = |E|, f(i) = t_i + 1$.

If $DE_G(t_1, \ldots, t_n) \neq DO_G(t_1, \ldots, t_n)$ then G is f-choosable.

Proof. Let G and f be as in the hypothesis of the theorem.

If there are no orientations of G with the correct outdegrees then the theorem is vacuously true.

For $1 \leq i \leq n$, suppose $S_i \subseteq \mathbb{Z}$ is such that $|S_i| = t_i + 1$.

Define $g_G \in \mathbb{Q}[\lambda_1, \dots, \lambda_n]$,

$$g_G := \prod_{\{i,j\} \in E: i < j} (\lambda_i - \lambda_j).$$

Clearly $c: V \to \mathbb{Z}$ is a proper coloring of D if and only if $g(c(1), \ldots, c(n)) \neq 0$.

The degree of g_G is $|E| = \sum_{i=1}^n t_i$, since g is the product of |E| linear polynomials.

Claim:

$$g_G = \sum_{d_1, \dots, d_n > 0} (DE_G(d_1, \dots, d_n) - DO_G(d_1, \dots, d_n)) \prod_{i=1}^n \lambda_i^{d_i}.$$

We will prove the claim by induction on |E|.

If |E| = 0 then $DE_G(0, ..., 0) = 1$, $DO_G(0, ..., 0) = 0$ and $DE_G(d_1, ..., d_n) = DO_G(d_1, ..., d_n) = 0$ for all $d_1, ..., d_n \in \mathbb{N}$ not all zero. Therefore $g_G = 1 = \sum_{d_1, ..., d_n \geq 0} (DE_G(d_1, ..., d_n) - DO_G(d_1, ..., d_n)) \prod_{i=1}^n \lambda_i^{d_i}$.

Assume $|E| \ge 1$ and the claim is true for all graphs with |E| - 1 edges. Let $\{k, j\} \in E$ with k < j and consider $G' = (V, E \setminus \{k, j\})$. This gives that $g_G = (\lambda_k - \lambda_j)g_{G'}$. We know that

$$DE_G(d_1, \dots, d_n) = DE_{G'}(d_1, \dots, d_{k-1}, d_k - 1, d_{k+1}, \dots, d_n) + DO_{G'}(d_1, \dots, d_{j-1}, d_j - 1, d_{j+1}, \dots, d_n)$$

because D is an even orientation of G containing (k, j) if and only if $D \setminus \{(k, j)\}$ is an even orientation of G' and D is an even orientation of G containing (j, k) if and only if $D \setminus \{(j, k)\}$ is an odd orientation of G'. Similarly,

$$DO_G(d_1, \ldots, d_n) = DO_{G'}(d_1, \ldots, d_{k-1}, d_k - 1, d_{k+1}, \ldots, d_n) + DE_{G'}(d_1, \ldots, d_{j-1}, d_j - 1, d_{j+1}, \ldots, d_n).$$

By the inductive hypothesis

$$g_{G'} = \sum_{d_1,\dots,d_n \ge 0} (DE_{G'}(d_1,\dots,d_n) - DO_{G'}(d_1,\dots,d_n)) \prod_{i=1}^n \lambda_i^{d_i}$$

and therefore

$$\begin{split} g_G &= (\lambda_k - \lambda_j) \sum_{d_1, \dots, d_n \geq 0} (\mathrm{DE}_{G'}(d_1, \dots, d_n) - \mathrm{DO}_{G'}(d_1, \dots, d_n)) \prod_{i=1}^n \lambda_i^{d_i} \\ &= \sum_{d_1, \dots, d_n \geq 0} (\mathrm{DE}_{G'}(d_1, \dots, d_n) - \mathrm{DO}_{G'}(d_1, \dots, d_n)) (\lambda_k - \lambda_j) \prod_{i=1}^n \lambda_i^{d_i} \\ &= \sum_{d_1, \dots, d_n \geq 0} (\mathrm{DE}_{G'}(d_1, \dots, d_{k-1}, d_k - 1, d_{k+1}, \dots, d_n) - \mathrm{DO}_{G'}(d_1, \dots, d_{k-1}, d_k - 1, d_{k+1}, \dots, d_n) - \\ &\qquad \mathrm{DE}_{G'}(d_1, \dots, d_{j-1}, d_j - 1, d_{j+1}, \dots, d_n) + \mathrm{DO}_{G'}(d_1, \dots, d_{j-1}, d_j - 1, d_{j+1}, \dots, d_n)) \prod_{i=1}^n \lambda_i^{d_i} \\ &= \sum_{d_1, \dots, d_n \geq 0} (\mathrm{DE}_G(d_1, \dots, d_n) - \mathrm{DO}_G(d_1, \dots, d_n)) \prod_{i=1}^n \lambda_i^{d_i}, \end{split}$$

proving the claim.

Since $\mathrm{DE}_G(t_1,\ldots,t_n)-\mathrm{DO}_G(t_1,\ldots,t_n)\neq 0$, the coefficient of $\prod_{i=1}^n\lambda_i^{t_i}$ is nonzero. So by the Combinatorial Nullstellensatz II, we have $s_1\in S_1,\ldots,s_n\in S_n$ such that $g(s_1,\ldots,s_n)\neq 0$. Taking, $c(i)=s_i$ for all $1\leq i\leq n$ gives a desired proper coloring.

4.3 Zero-sum flows in graphs

For a graph, $G = (V, \{e_1, \dots, e_n\})$, a zero p-flow of G is a map $f : E \to \mathbb{Z}_p \setminus \{0\}$ such that for all $v \in V$

$$\sum_{e \in E: v \in e} f(e) = 0.$$

The following result was shown by Akbari et al. [1].

Theorem 4.3. Let $G = (V, \{e_1, \ldots, e_n\})$ be a graph and

$$g = \prod_{v \in V} \left(\left(\sum_{e_i \in E: v \in e_i} \lambda_i \right)^{p-1} - 1 \right) \in \mathbb{Z}_p[\lambda_1, \dots, \lambda_n]$$

then G has a zero p-flow if and only if $g \notin \langle \lambda_1^{p-1} - 1, \dots, \lambda_n^{p-1} - 1 \rangle$.

Proof. Let G and g be as in the hypothesis of the theorem.

For every $s \in \mathbb{Z}_p \setminus \{0\}$, $s^{p-1} = 1$. So $f : E \to \mathbb{Z}_p$ is a zero \mathbb{Z}_p -flow of G if and only if $g(f(e_1), \dots, f(e_n)) \neq 0$.

Take $\bar{g} \in \mathbb{Z}_p[\lambda_1, \dots, \lambda_n]$ to be a polynomial of least degree such that $\bar{g} \in g + \langle \lambda_1^{p-1} - 1, \dots, \lambda_n^{p-1} - 1 \rangle$. Then $\bar{g} = g + h$ for some $h \in \langle \lambda_1^{p-1} - 1, \dots, \lambda_n^{p-1} - 1 \rangle$. Since $h = \sum_{i=0}^n h_i(\lambda_i^{p-1} - 1)$ for some $h_i \in F[\lambda_1, \dots, \lambda_n]$, $h(s_1, \dots, s_n) = 0$ for all $s_1, \dots, s_n \in \mathbb{Z}_p \setminus \{0\}$. Therefore for all $s_1, \dots, s_n \in \mathbb{Z}_p \setminus \{0\}$, $\bar{g}(s_1, \dots, s_n) = g(s_1, \dots, s_n)$.

If $\bar{g} \neq 0$ then there exists a monomial $\prod_{i=1}^n \lambda_i^{t_i}$ with nonzero coefficient in g for some $t_i \in \mathbb{N}$ such that $\sum_{i=1}^n t_i = \deg(\bar{g})$. Since $\deg_i(\bar{g}) \leq p-2$ for all $1 \leq i \leq n$, $t_i \leq p-2$. Since $|\mathbb{Z}_p \setminus \{0\}| = p > p-2$, by the Combinatorial Nullstellensatz II there exists $s_1, \ldots, s_n \in \mathbb{Z}_p \setminus \{0\}$ such that $g(s_1, \ldots, s_n) = \bar{g}(s_1, \ldots, s_n) \neq 0$. Setting $f(e_i) = s_i$ for all $1 \leq i \leq n$, we can see that G has a zero p-flow.

If $\bar{q} = 0$ then $\bar{q} = q$ is always zero and thus G has no zero p-flow.

Therefore G has a zero p-flow if and only if $\bar{g} \neq 0$ or equivalently $g \notin \langle \lambda_1^{p-1} - 1, \dots, \lambda_n^{p-1} - 1 \rangle$.

References

- [1] S. Akbari, A. Daemi, O. Hatami, A. Javanmard, A. Mehrabian, Zero-Sum Flows in Regular Graphs, *Graphs and Combinatorics* **26** (2010), 603–615.
- [2] N. Alon, Combinatorial Nullstellensatz, Combinatorics, Probability and Computing 8 (1999), 7–29.
- [3] N. Alon, Additive latin transversals, Israel Journal of Mathematics 117 (2000), 125–130.
- [4] N. Alon, M.B. Nathanson, I.Z. Ruzsa, The polynomial method and restricted sums of congruence classes, *Journal of Number Theory* **56** (1996), 404–417.
- [5] N. Alon, M. Tarsi, Colorings and orientations of graphs, Combinatorica 12 (1992), 125–134.
- [6] M. Atiyah, I.G. Macdonald, Introduction to Commutative Algebra (1969), Addison-Wesley.
- [7] E. Ben-Sasson, M. Sudan, Short PCPs with Polylog Query Complexity, SIAM J. Comput. 38(2) (2008), 551–607.
- [8] B. Bollobás, A.J. Harris, List colorings of graphs, Graphs and Combinatorics, 1 (1985), 115–127.
- [9] B. Green, T. Tao, The distribution of polynomials over finite fields, with applications to the Gowers norms (2007), arXiv:0711.3191v1.
- [10] David Eisenbud, Commutative Algebra With a View Toward Algebraic Geometry, Graduate Texts in Mathematics 150 (1995), Springer-Verlag.
- [11] R. Hartshorne, Algebraic Geometry, Graduate Texts in Mathematics 52 (1977), Springer-Verlag.
- [12] D. Hefetz, Anti-Magic Graphs via the Combinatorial NullStellenSatz, Journal of Graph Theory **50(4)** (2005).
- [13] M. Michalek, A short proof of Combinatorial Nullstellensatz (2009), arXiv:0904.4573v1.
- [14] L. Ronyai, On a conjecture of Kemnitz, Combinatorica 20(4) (2000), 569–573.
- [15] L.H. Rowen, Graduate Algebra: Commutative View, Graduate Studies in Mathematics 73 (2006), American Mathematical Society.
- [16] Z.W. Sun, Unification of zero-sum problems, subset sums and covers of \mathbb{Z} , Electronic Research Announcements of the American Mathematical Society 9 (2003), 51–60.
- [17] T. Tao, T. Ziegler, The primes contain arbitrarily long polynomial progressions, *Acta. Math.* **201** (2008), 213–305.