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Abstract

The Combinatorial Nullstellensatz is a theorem about the roots of a polynomial. It is related to Hilbert’s
Nullstellensatz. Established in 1996 by Alon et al. [4] and generalized in 1999 by Alon [2], the Combinatorial
Nullstellensatz is a powerful tool that allows the use of polynomials to solve problems in number theory and
graph theory. This article introduces the Combinatorial Nullstellensatz, along with a proof and some of its
applications. We also compare the Combinatorial Nullstellensatz to Hilbert’s Nullstellensatz.



1 Introduction

The Combinatorial Nullstellensatz was first proved for fields of prime characteristic in 1996 by Alon et al.
[4] and generalized to arbitrary fields and named in 1999 by Alon [2]. The Combinatorial Nullstellensatz
is a pair of theorems. Theorem 1.1 resembles Hilbert’s Nullstellensatz (see Theorem 3.1) and Theorem 1.2,
which is also called the “’“Nonvanishing Theorem” [14], is a useful tool that bounds the number of roots of a
multivariate polynomial.

Theorem 1.1 (Combinatorial Nullstellensatz I [2]). Let F be a field and f € F[A1,...,Ay]. Let S1,...,S,
be nonempty finite subsets of F.

Define g; = Hsesi()‘i —5).
If f(s1,...,8n) =0 for all s; € S; then there exists h, ..., hy € F[A1, ..., \y] with deg(h;) < deg(f)—deg(g;:)

such that: .
fF=Y higi.
i=1

If f,91,--.,9n € R[A1, ..., \n] for some subring, R C F, then we can find such h; € R[A1,..., \,].
Theorem 1.2 (Combinatorial Nullstellensatz II [2]). Let F be a field and f € F[A1,..., Ay].

Suppose deg(f) = S, t; for some nonnegative integers, t;, and the coefficient of [[}_; \i' is nonzero. If
S1,...,8n C F such that |S;| > t; then there exists s1 € S1, ..., $p € Sy, such that:

f(s1,...,8,) #0.

The Combinatorial Nullstellensatz has many applications. In his 1999 article [2], Alon gave applications for
sumsets, the permanent lemma, extremal graph theory and list coloring of graphs. Later applications were
done for sumsets [3, 16], sequences [14, 17|, probabilistically checkable proofs [7], graph labellings [12] and
zero flow in graphs [1].

In this paper we start with an outline of the original proof of the Combinatorial Nullstellensatz, next we give
a comparison to Hilbert’s Nullstellensatz and finally we investigate three examples of using the Combinatorial
Nullstellensatz.

2 Proof of the Combinatorial Nullstellensatz

We shall present the original proof by Alon [2]. To prove the two theorems of the Combinatorial Nullstel-
lensatz we need the following lemma. This lemma is powerful by itself and has been utilized in [9].

Lemma 2.1. Let F be a field and f € F[A1,...,\y].
Suppose the degree of \; in f is less than t; for all1 <i<mn and S; C F are such that |S;| > t;41 + 1.
If f(s1,...,8n) =0 for all s € S1,...,8, € Sy, then f =0.

Proof. We shall proceed by induction on n.
If n = 1 then the statement is merely the fundamental theorem of algebra.
If n > 1 then for f € F[A1,...,\;] and S; C F, write f as

tn

F=YF00 0 AN,

=0



where f; € F[A1,...,A\p—1] such that \; in each f; has degree at most ¢;.

For s1 € S1,...,8p-1 € Sn—1, the polynomial, Q = f(s1,...,8n—1,An) € F[Ay], equals zero for all A, = s, €
Sy and thus @ = 0. Therefore f;(s1,...,8,—1) =0 for all s; € S1,...,8,—1 € Sp—1. Thus by the inductive
hypothesis, f; = 0 for all < and so f = 0. O

Now we shall prove the Combinatorial Nullstellensatz.
Proof of Combinatorial Nullstellensatz I. Suppose f € F[A1,...,Ay] and S1,...,S, C F are as in the hy-
pothesis of Theorem 1.1.
Let t; = |S;| — 1 and
ti
gi= [ Qi—=s) =271 => i\
S;€S; =0
for each 1.
For p € F[A1,...,\,] define [)\{]p be the coefficient of )\g as a polynomial in F[A1,..., Ni—1, Nit1,.--, Al

Consider the recurrence relation:

fin=1f
fir1,1 = fideg,(f)+1 Vi>1
deg; (fi,j)—ti
figv1= fij — Z DN i | 9 Vi, j > 1 (2.1)
=0

where deg;(y) is the degree of A\; in y € F[A1,...,A,]. Let

deg; (f)+1 [deg;(fi;)—t:

hi= ) > (M) A

=1 t=0
and ~
f = fn,degi(f)-&-l'

Note that h has degree at most deg f — deg g; and the coefficients of h are in the smallest ring containing
the coefficients of g; and f. Also f — " | g;h; = f. Since for all 4,7, fi;(s1,...,5,) = 0 for all s; € S; it
follows that f(s1,...,8,) =0 for all s; € S;.

For each i,j > 1, deg;(fij+1) < max{t; + 1,deg;(fi;)} and thus deg;(fi deg, f+1) < max{t;,deg;(f) —
deg;(f) + 1} = t;. Therefore deg,(f) <t; for all i.

So by Lemma 2.1, f =0 and thus f = Y"1 | h;g;. O

A short proof of Theorem 1.2 was given by Michalek [13]; however we shall give the original proof, since we
have the tools to do so.

Proof of Combinatorial Nullstellensatz II. Suppose f € F[A1,..., A, t1,...,t, and Sq,..., S, C F are as
in the hypothesis of Theorem 1.1.
We may assume that |S;| =¢; + 1.

Suppose for all s; € S, f(s1,...,8,) = 0 and let g; = ZsiGSi(/\i — 8;). By Theorem 1.1 there exist
hi € F[A1,...,A,] with deg(h;) < 2?21 t; —degg; and f=>"" h;g;.



However every monomial of maximum degree in hj;g; = h; Hsi cs (@i — s;) is divisible by )\;jH. Therefore
the monomials of deg(f) in f = > I, hig; are divisible by /\z.j 1 for some j. Therefore the coefficient of
H?zl X;fi in f is zero, but this was assumed false in the hypothesis of the theorem giving a contradiction. [

3 Comparison to Hilbert’s Nullstellensatz

The Combinatorial Nullstellensatz gets its name from the similar Hilbert’s Nullstellensatz.

Theorem 3.1 (Hilbert’s Nullstellensatz [11]). Let F be an algebraically closed field, f € F[A1,..., ] and
I be an ideal of F[A1,...,\n].

Define
S={(s1,...,80) € F" : g(s1,...,8,) =0Vg € I}.
If f(s1,...,8m) =0 for all (s1,...,8,) € S then
frel
for some k € NT,

The importance of Hilbert’s Nullstellensatz is that it implies the following foundational theorem in Algebraic
Geometry.

Theorem 3.2 ([11]). Let F be an algebraically closed field. There is a one-to-one correspondence between
the collection of radical ideals of F[A1, ..., An] and the collection of algebraic subsets of F™.

The algebraic subsets of F™ are the subsets of the form {(s1,...,s,) € F" : f(s1,...,8,) = 0Vf € I} for
some subset, I C F[A1,...,\,].

We include the proof to show the use of Hilbert’s Nullstellensatz.

Proof. Take
i:S—{fe f(s1,.-.,80) =0Y(s1,...,8,) €S}

and
o: I {(s1,...,8,) €EF": f(s1,...,8,) =0Vf € T}.

i maps into radical ideals because if i(.S) is an ideal for all sets S and f*(sq,...,s,) = 0then f(s1,...,s,) = 0.
o maps into algebra sets by definition.

For S an algebraic subset of F™, if (s1,...,8,) € S then f(s1,...,s,) = 0 for all f € i(S) and thus
($15.--,8n) € a(i(9)). If (s1,...,5n) € 0(i(5)) then f(s1,...,8,) =0forall f € i(S) and thus (s1,...,s,) €
S. So oi fixes algebraic subsets of F™.

For I a radical ideal of F[Ay,...,A,], if f € I then f(sq1,...,8,) = 0 for all (s1,...,8,) € o(I) and thus
f €io(l). It f € io(I) then f(s1,...,8,) = 0 for all (s1,...,8,) € o(I) and by Hilbert’s Nullstellensatz
f¥ € I. Because I is radical f € I. So io fixes radical ideals. This result is sometimes called “Hilbert’s
Nullstellensatz” instead of Theorem 3.1 [6, 10, 15].

Therefore o is a desired one-to-one correspondence. O
If we take I = (g1,...,9m) in Hilbert’s Nullstellensatz for some m € N and g1,...,9m € F[A1,...,A,] then

for f € F[\1,...,\,] satisfying the hypothesis of Hilbert’s Nullstellensatz we get that f* € (g1,...,gm) for
some k € NT. In other words .
fr = Z higi
i=1



for some h; € F[A1,...,A,]. This result looks very similar to the result of the Combinatorial Nullstellensatz
L If T is radical then we can get f=>""", h;g;.

The power of the Combinatorial Nullstellensatz is that it includes a bound on the degree of the h; and the
base field does not have to be algebraic closed. Since Hilbert’s Nullstellensatz is merely a lemma for Theorem
3.2, those parts of the Nullstellensatz are unnecessary

The Combinatorial Nullstellensatz puts a restriction on the type of ideal allowed. We can see the Combina-
torial Nullstellensatz as determining when f € (g1, ..., gn), for specific types of g;. Hilbert’s Nullstellensatz
puts no restriction on I. This is again because it is a lemma for Theorem 3.2 which at least needs the
Nullstellensatz to work on radical ideals.

4 Applications of the Combinatorial Nullstellensatz

Now we shall look at how the Combinatorial Nullstellensatz can be used to solve various problems. We will
investigate three examples: sum sets, list coloring and zero-sum flows in graphs. The first two examples are
from Alon [2] and the latter example is due to Akbari et al. [1].

4.1 Sumsets

Given two subsets, A, B, of a ring R, their sum is the set, A+ B={a+b:a € A b € B}. We may call
A+ B a sumset.

The following theorem of sumsets was proved in 1813 by Cauchy using induction and a combinatorial
argument [2]. We shall instead use the Combinatorial Nullstellensatz in our proof, which comes from Alon

[2].

Theorem 4.1. If p is prime and A, B are non empty subsets of Z,, then
A+ B| > min{p, || + |B| - 1}.

Proof. 1f |A| + |B| > p then for every g € Z,, AN (g — B) # () and so A+ B = Z,,.

Assume |A|+ |B| <pand |[A+ B| < |A|+|B| — 2.

Let C C Z be such that A4+ B C C and |C| = |A| + |B| — 2 and define f(x,y) = [[.cc(z +y — c). Note
that for all a € A,b € B: f(a,b) =[] .co(a+b—c)=0.

Since x!41=1y|B| — 1 has the coefficient (\A\‘zl‘ﬂﬂ% which is nonzero, and deg(f) = |C| = |[A| + |B| — 2, if
we take t; = |A| — 1, to = |[B| — 1, S; = A and S; = B then by the Combinatorial Nullstellensatz II there

exists and a € A and b € B such that f(a,b) # 0, a contradiction. O

4.2 List coloring

A graph is a pair, G = (V, E), where V is a finite set and E is a set whose elements are sets of two elements
of V. Elements of V are called vertices and elements of E are called edges.

A proper coloring of a graph, G = (V, E), is function, ¢ : V' — Z such that for all {v,w} € E, ¢(v) # ¢(w).
A graph, G = (V, E), is k-colorable for k € N if there exists a proper coloring, ¢, such that |¢(V)| < k

Let f: V — N. We say that G = (V, E) is f-choosable if for all S : V — P(Z) with |S(z)| = f(v) there
exists a proper coloring, ¢, such that for all v € V, ¢(v) € S(v). A graph is k-choosable (or k-list colorable)
for k € N if G is k-choosable, where x(v) =k for all v € V.



Clearly a graph is k-colorable if it is k-choosable. An important question in graph theory asks if the converse
is true [8].

We shall present a result about f-choosablility, first proved in 1992 by Alon and Tarsi [5]. First we give a
few more definitions.

An orientation of a graph G = (V,E) is a set, D C V x V, such that |D| = |E| and for each (v,w) € D,
{v,w} € E. We call the outdegree in D of a vertex, v € V, is |{(v,w) € D}|. If V. ={1,...,n} then we say
the parity of D is the parity of |{(i,j) € D : i < j}|. We define DEg(dy,...,d,) to be the number of even
orientations of G with outdegrees, d1, ..., d,, of vertices 1,...,n respectively and we define DEg(d1,...,d,)
to be the number of odd orientations of G with outdegrees, d,...,d,, of vertices 1,...,n respectively.

Theorem 4.2. Let G = ({1,2,...,n},E).
Let f:{1,2,...,n} = N such that for some Y . t; = |E|, f(i) =1t + 1.
If DEGg(t1,...,ts) # DOg(t1,...,t,) then G is f-choosable.

Proof. Let G and f be as in the hypothesis of the theorem.
If there are no orientations of G with the correct outdegrees then the theorem is vacuously true.
For 1 < i < n, suppose S; C Z is such that |S;| =¢; + 1.

Define gg € Q[A1, ..., A\,
gai= [ =)

{i,j}EE:i<j
Clearly ¢: V — Z is a proper coloring of D if and only if g(¢(1),...,c(n)) # 0.
The degree of gg is |E| = Y .-, t;, since g is the product of |E| linear polynomials.

Claim:
n

ga= Y. (DEg(dy,...,d,) —DOg(dy,....dn)) [T A"
i yeeeydn >0 i=1
We will prove the claim by induction on |E].

If |[E| = 0 then DE¢(0,...,0) =1, DOg(0,...,0) = 0 and DE¢(dy,...,d,) = DOg(dy,...,d,) = 0 for all
di,...,d, € N not all zero. Therefore go =1 = Zdl anO(DEg(dl, cooydn) = DOg(dy,...,dn)) Ty )\‘iii.

Assume |E| > 1 and the claim is true for all graphs with |E| — 1 edges. Let {k,j} € F with k < j and
consider G' = (V, E \ {k, j}). This gives that g¢ = (Ax — Aj)g9c’. We know that

.....

DEq(dy, ... dn) = DEqi(dy, ... dg_1,di — 1, dgr1, ... dn) +DOqr(dy, ... dj_1,dj — 1,d;i1,. .. dy)

because D is an even orientation of G containing (k, j) if and only if D \ {(k,7)} is an even orientation of
G’ and D is an even orientation of G containing (j, k) if and only if D\ {(j,%)} is an odd orientation of G'.
Similarly,

DO¢(dy, ... dy) =DOg(dy, ... dp1,dx — L dprr, ... dn) + DB (dy,... dj_1,dj — 1,djyq, ... dy).

By the inductive hypothesis

g’ = Z (DEG/(dl,...,dn) —DOG/(dl,...,dn))H/\?i

di,...,dpn>0 i=1



and therefore

go=M =) Y. (DEg(di,....d,) = DO (ds,....dy H)\d
dy,...,dn>0
= Y (DEq/(ds,...,dn) = DOq(dy, ... dn)) (A — A H)\d
di,...,dn >0
= Y (DEq(dy,....dx—1,dr— 1,dpya,...,dn) = DOq(dy, ..., dx_1,d — 1, dps1,...,dp)—
dy,..., dn,>0

DE:(di, ..., dj—1,dj = 1,djj1,...,dn) + DOgi(dy, ... dj_1,dj — 1,djy,...,dn)) [ A"

> (DEg(d,...,dn) —DOg(ds,. .., dy H/\

dy,....,dn >0
proving the claim.

Since DE¢(t1, ..., t,) —DOg(t1, ..., t,) # 0, the coefficient of [T, )\f is nonzero. So by the Combinatorial
Nullstellensatz II, we have s; € Si,...,8, € S, such that g(s1,...,s,) # 0. Taking, c(i) = s; for all
1 <4 < n gives a desired proper coloring. O

4.3 Zero-sum flows in graphs

For a graph, G = (V,{e1,...,en}), a zero p-flow of G isamap f: E — Z, \ {0} such that for all v € V

> fle)=

ecE:v€Ee

The following result was shown by Akbari et al. [1].
Theorem 4.3. Let G = (V,{e1,...,en}) be a graph and

g=1]] ( > Ai>—1 € Zp[M, - An]

veV e;€R:vEe;

then G has a zero p-flow if and only if g ¢ <)\}f*1 —1,..., 27— 1),

n

Proof. Let G and g be as in the hypothesis of the theorem.
For every s € Z, \ {0}, s’ = 1. So f: E — Z, is a zero Z,-flow of G if and only if g(f(e1),..., f(en)) # 0.

Take § € Zy[A1, ..., \y] to be a polynomial of least degree such that § € g + ()\’1’_1 -1,..., )\2—1 —1). Then
G=g+hforsome he (A" —1,... A=t —1). Since h = 37 hi(\'"" — 1) for some h; € F[Ay, ..., A\,
h(s1,...,8,) = 0 for all s1,...,8, € Zy \ {0}. Therefore for all s1,...,s, € Zp \ {0}, g(s1,...,5,) =
9(81,- -+, 8n)-

If g # 0 then there exists a monomial [, )\t' with nonzero coefficient in ¢ for some ¢; € N such that
Yo t; = deg(g). Since deg;(g) < p—2foralll <i<mn,t; <p-—2. Since |Z, \ {0} =p > p— 2, by the
Combinatorial Nullstellensatz II there exists s1, ..., s, € Z,\{0} such that g(s1,...,s,) = G(s1,...,5,) # 0.
Setting f(e;) = s; for all 1 <i <n, we can see that G has a zero p-flow.

If g = 0 then g = g is always zero and thus G has no zero p-flow.
Therefore G has a zero p-flow if and only if g # 0 or equivalently g ¢ (AP~ —1,... Ap~1 —1). O
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