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Abstract

The Combinatorial Nullstellensatz is a theorem about the roots of a polynomial. It is related to Hilbert’s
Nullstellensatz. Established in 1996 by Alon et al. [4] and generalized in 1999 by Alon [2], the Combinatorial
Nullstellensatz is a powerful tool that allows the use of polynomials to solve problems in number theory and
graph theory. This article introduces the Combinatorial Nullstellensatz, along with a proof and some of its
applications. We also compare the Combinatorial Nullstellensatz to Hilbert’s Nullstellensatz.



1 Introduction

The Combinatorial Nullstellensatz was first proved for fields of prime characteristic in 1996 by Alon et al.
[4] and generalized to arbitrary fields and named in 1999 by Alon [2]. The Combinatorial Nullstellensatz
is a pair of theorems. Theorem 1.1 resembles Hilbert’s Nullstellensatz (see Theorem 3.1) and Theorem 1.2,
which is also called the “’Nonvanishing Theorem” [14], is a useful tool that bounds the number of roots of a
multivariate polynomial.

Theorem 1.1 (Combinatorial Nullstellensatz I [2]). Let F be a field and f ∈ F [λ1, . . . , λn]. Let S1, . . . , Sn

be nonempty finite subsets of F .

Define gi =
∏

s∈Si
(λi − s).

If f(s1, . . . , sn) = 0 for all si ∈ Si then there exists h1, . . . , hn ∈ F [λ1, . . . , λn] with deg(hi) ≤ deg(f)−deg(gi)
such that:

f =

n∑
i=1

higi.

If f, g1, . . . , gn ∈ R[λ1, . . . , λn] for some subring, R ⊆ F , then we can find such hi ∈ R[λ1, . . . , λn].

Theorem 1.2 (Combinatorial Nullstellensatz II [2]). Let F be a field and f ∈ F [λ1, . . . , λn].

Suppose deg(f) =
∑n

i=1 ti for some nonnegative integers, ti, and the coefficient of
∏n

i=1 λ
ti
i is nonzero. If

S1, . . . , Sn ⊆ F such that |Si| > ti then there exists s1 ∈ S1, . . . , sn ∈ Sn such that:

f(s1, . . . , sn) 6= 0.

The Combinatorial Nullstellensatz has many applications. In his 1999 article [2], Alon gave applications for
sumsets, the permanent lemma, extremal graph theory and list coloring of graphs. Later applications were
done for sumsets [3, 16], sequences [14, 17], probabilistically checkable proofs [7], graph labellings [12] and
zero flow in graphs [1].

In this paper we start with an outline of the original proof of the Combinatorial Nullstellensatz, next we give
a comparison to Hilbert’s Nullstellensatz and finally we investigate three examples of using the Combinatorial
Nullstellensatz.

2 Proof of the Combinatorial Nullstellensatz

We shall present the original proof by Alon [2]. To prove the two theorems of the Combinatorial Nullstel-
lensatz we need the following lemma. This lemma is powerful by itself and has been utilized in [9].

Lemma 2.1. Let F be a field and f ∈ F [λ1, . . . , λn].

Suppose the degree of λi in f is less than ti for all 1 ≤ i ≤ n and Si ⊆ F are such that |Si| ≥ ti+1 + 1.

If f(s1, . . . , sn) = 0 for all s1 ∈ S1, . . . , sn ∈ Sn then f = 0.

Proof. We shall proceed by induction on n.

If n = 1 then the statement is merely the fundamental theorem of algebra.

If n > 1 then for f ∈ F [λ1, . . . , λn] and Si ⊆ F , write f as

f =

tn∑
i=0

fi(λ1, . . . , λn−1)λi,
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where fi ∈ F [λ1, . . . , λn−1] such that λj in each fi has degree at most tj .

For s1 ∈ S1, . . . , sn−1 ∈ Sn−1, the polynomial, Q = f(s1, . . . , sn−1, λn) ∈ F [λn], equals zero for all λn = sn ∈
Sn and thus Q = 0. Therefore fi(s1, . . . , sn−1) = 0 for all s1 ∈ S1, . . . , sn−1 ∈ Sn−1. Thus by the inductive
hypothesis, fi = 0 for all i and so f = 0.

Now we shall prove the Combinatorial Nullstellensatz.

Proof of Combinatorial Nullstellensatz I. Suppose f ∈ F [λ1, . . . , λn] and S1, . . . , Sn ⊆ F are as in the hy-
pothesis of Theorem 1.1.

Let ti = |Si| − 1 and

gi =
∏

si∈Si

(λi − si) = λti+1
i −

ti∑
j=0

gijλ
j
i

for each i.

For p ∈ F [λ1, . . . , λn] define [λji ]p be the coefficient of λji as a polynomial in F [λ1, . . . , λi−1, λi+1, . . . , λn].

Consider the recurrence relation:

f1,1 = f

fi+1,1 = fi,degi(f)+1 ∀i ≥ 1

fi,j+1 = fi,j −

degi(fi,j)−ti∑
t=0

(λti)[λ
t+ti
i ]fi,j

 gi ∀i, j ≥ 1 (2.1)

where degi(y) is the degree of λi in y ∈ F [λ1, . . . , λn]. Let

hi =

degi(f)+1∑
j=1

degi(fi,j)−ti∑
t=0

(
[λt+ti

i ]fi,j
)
λti


and

f̄ = fn,degi(f)+1.

Note that h has degree at most deg f − deg gi and the coefficients of h are in the smallest ring containing
the coefficients of gi and f . Also f −

∑n
i=1 gihi = f̄ . Since for all i, j, fi,j(s1, . . . , sn) = 0 for all si ∈ Si it

follows that f̄(s1, . . . , sn) = 0 for all si ∈ Si.

For each i, j ≥ 1, degi(fi,j+1) < max{ti + 1,degi(fi,j)} and thus degi(fi,degi f+1) ≤ max{ti,degi(f) −
degi(f) + 1} = ti. Therefore degi(f̄) ≤ ti for all i.

So by Lemma 2.1, f̄ = 0 and thus f =
∑n

i=1 higi.

A short proof of Theorem 1.2 was given by Michalek [13]; however we shall give the original proof, since we
have the tools to do so.

Proof of Combinatorial Nullstellensatz II. Suppose f ∈ F [λ1, . . . , λn], t1, . . . , tn and S1, . . . , Sn ⊆ F are as
in the hypothesis of Theorem 1.1.

We may assume that |Si| = ti + 1.

Suppose for all si ∈ S, f(s1, . . . , sn) = 0 and let gi =
∑

si∈Si
(λi − si). By Theorem 1.1 there exist

hi ∈ F [λ1, . . . , λn] with deg(hi) ≤
∑n

j=1 tj − deg gi and f =
∑n

i=1 higi.
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However every monomial of maximum degree in hjgj = hj
∏

si∈S(xi − si) is divisible by λtj+1
j . Therefore

the monomials of deg(f) in f =
∑n

i=1 higi are divisible by λtj+1
j for some j. Therefore the coefficient of∏n

i=1 λ
ti
i in f is zero, but this was assumed false in the hypothesis of the theorem giving a contradiction.

3 Comparison to Hilbert’s Nullstellensatz

The Combinatorial Nullstellensatz gets its name from the similar Hilbert’s Nullstellensatz.

Theorem 3.1 (Hilbert’s Nullstellensatz [11]). Let F be an algebraically closed field, f ∈ F [λ1, . . . , λn] and
I be an ideal of F [λ1, . . . , λn].

Define
S = {(s1, . . . , sn) ∈ Fn : g(s1, . . . , sn) = 0∀g ∈ I}.

If f(s1, . . . , sm) = 0 for all (s1, . . . , sn) ∈ S then

fk ∈ I,

for some k ∈ N+.

The importance of Hilbert’s Nullstellensatz is that it implies the following foundational theorem in Algebraic
Geometry.

Theorem 3.2 ([11]). Let F be an algebraically closed field. There is a one-to-one correspondence between
the collection of radical ideals of F [λ1, . . . , λn] and the collection of algebraic subsets of Fn.

The algebraic subsets of Fn are the subsets of the form {(s1, . . . , sn) ∈ Fn : f(s1, . . . , sn) = 0 ∀f ∈ I} for
some subset, I ⊆ F [λ1, . . . , λn].

We include the proof to show the use of Hilbert’s Nullstellensatz.

Proof. Take
i : S 7→ {f ∈: f(s1, . . . , sn) = 0∀(s1, . . . , sn) ∈ S}

and
σ : I 7→ {(s1, . . . , sn) ∈ Fn : f(s1, . . . , sn) = 0 ∀f ∈ I}.

imaps into radical ideals because if i(S) is an ideal for all sets S and fk(s1, . . . , sn) = 0 then f(s1, . . . , sn) = 0.
σ maps into algebra sets by definition.

For S an algebraic subset of Fn, if (s1, . . . , sn) ∈ S then f(s1, . . . , sn) = 0 for all f ∈ i(S) and thus
(s1, . . . , sn) ∈ σ(i(S)). If (s1, . . . , sn) ∈ σ(i(S)) then f(s1, . . . , sn) = 0 for all f ∈ i(S) and thus (s1, . . . , sn) ∈
S. So σi fixes algebraic subsets of Fn.

For I a radical ideal of F [λ1, . . . , λn], if f ∈ I then f(s1, . . . , sn) = 0 for all (s1, . . . , sn) ∈ σ(I) and thus
f ∈ iσ(I). If f ∈ iσ(I) then f(s1, . . . , sn) = 0 for all (s1, . . . , sn) ∈ σ(I) and by Hilbert’s Nullstellensatz
fk ∈ I. Because I is radical f ∈ I. So iσ fixes radical ideals. This result is sometimes called “Hilbert’s
Nullstellensatz” instead of Theorem 3.1 [6, 10, 15].

Therefore σ is a desired one-to-one correspondence.

If we take I = 〈g1, . . . , gm〉 in Hilbert’s Nullstellensatz for some m ∈ N and g1, . . . , gm ∈ F [λ1, . . . , λn] then
for f ∈ F [λ1, . . . , λn] satisfying the hypothesis of Hilbert’s Nullstellensatz we get that fk ∈ 〈g1, . . . , gm〉 for
some k ∈ N+. In other words

fk =

m∑
i=1

higi
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for some hi ∈ F [λ1, . . . , λn]. This result looks very similar to the result of the Combinatorial Nullstellensatz
I. If I is radical then we can get f =

∑m
i=1 higi.

The power of the Combinatorial Nullstellensatz is that it includes a bound on the degree of the hi and the
base field does not have to be algebraic closed. Since Hilbert’s Nullstellensatz is merely a lemma for Theorem
3.2, those parts of the Nullstellensatz are unnecessary

The Combinatorial Nullstellensatz puts a restriction on the type of ideal allowed. We can see the Combina-
torial Nullstellensatz as determining when f ∈ 〈g1, . . . , gn〉, for specific types of gi. Hilbert’s Nullstellensatz
puts no restriction on I. This is again because it is a lemma for Theorem 3.2 which at least needs the
Nullstellensatz to work on radical ideals.

4 Applications of the Combinatorial Nullstellensatz

Now we shall look at how the Combinatorial Nullstellensatz can be used to solve various problems. We will
investigate three examples: sum sets, list coloring and zero-sum flows in graphs. The first two examples are
from Alon [2] and the latter example is due to Akbari et al. [1].

4.1 Sumsets

Given two subsets, A,B, of a ring R, their sum is the set, A + B = {a + b : a ∈ A, b ∈ B}. We may call
A+B a sumset.

The following theorem of sumsets was proved in 1813 by Cauchy using induction and a combinatorial
argument [2]. We shall instead use the Combinatorial Nullstellensatz in our proof, which comes from Alon
[2].

Theorem 4.1. If p is prime and A,B are non empty subsets of Zp then

|A+B| ≥ min{p, |A|+ |B| − 1}.

Proof. If |A|+ |B| > p then for every g ∈ Zp, A ∩ (g −B) 6= ∅ and so A+B = Zp.

Assume |A|+ |B| ≤ p and |A+B| ≤ |A|+ |B| − 2.

Let C ⊆ Z be such that A + B ⊂ C and |C| = |A| + |B| − 2 and define f(x, y) =
∏

c∈C(x + y − c). Note
that for all a ∈ A, b ∈ B: f(a, b) =

∏
c∈C(a+ b− c) = 0.

Since x|A|−1y|B| − 1 has the coefficient
(|A|+|B|−2
|A|−1

)
, which is nonzero, and deg(f) = |C| = |A| + |B| − 2, if

we take t1 = |A| − 1, t2 = |B| − 1, S1 = A and S2 = B then by the Combinatorial Nullstellensatz II there
exists and a ∈ A and b ∈ B such that f(a, b) 6= 0, a contradiction.

4.2 List coloring

A graph is a pair, G = (V,E), where V is a finite set and E is a set whose elements are sets of two elements
of V . Elements of V are called vertices and elements of E are called edges.

A proper coloring of a graph, G = (V,E), is function, c : V → Z such that for all {v, w} ∈ E, c(v) 6= c(w).
A graph, G = (V,E), is k-colorable for k ∈ N if there exists a proper coloring, c, such that |c(V )| ≤ k.

Let f : V → N. We say that G = (V,E) is f -choosable if for all S : V → P(Z) with |S(x)| = f(v) there
exists a proper coloring, c, such that for all v ∈ V , c(v) ∈ S(v). A graph is k-choosable (or k-list colorable)
for k ∈ N if G is κ-choosable, where κ(v) = k for all v ∈ V .
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Clearly a graph is k-colorable if it is k-choosable. An important question in graph theory asks if the converse
is true [8].

We shall present a result about f -choosablility, first proved in 1992 by Alon and Tarsi [5]. First we give a
few more definitions.

An orientation of a graph G = (V,E) is a set, D ⊆ V × V , such that |D| = |E| and for each (v, w) ∈ D,
{v, w} ∈ E. We call the outdegree in D of a vertex, v ∈ V , is |{(v, w) ∈ D}|. If V = {1, . . . , n} then we say
the parity of D is the parity of |{(i, j) ∈ D : i < j}|. We define DEG(d1, . . . , dn) to be the number of even
orientations of G with outdegrees, d1, . . . , dn, of vertices 1, . . . , n respectively and we define DEG(d1, . . . , dn)
to be the number of odd orientations of G with outdegrees, d1, . . . , dn, of vertices 1, . . . , n respectively.

Theorem 4.2. Let G = ({1, 2, . . . , n}, E).

Let f : {1, 2, . . . , n} → N such that for some
∑n

i=1 ti = |E|, f(i) = ti + 1.

If DEG(t1, . . . , tn) 6= DOG(t1, . . . , tn) then G is f -choosable.

Proof. Let G and f be as in the hypothesis of the theorem.

If there are no orientations of G with the correct outdegrees then the theorem is vacuously true.

For 1 ≤ i ≤ n, suppose Si ⊆ Z is such that |Si| = ti + 1.

Define gG ∈ Q[λ1, . . . , λn],
gG :=

∏
{i,j}∈E:i<j

(λi − λj).

Clearly c : V → Z is a proper coloring of D if and only if g(c(1), . . . , c(n)) 6= 0.

The degree of gG is |E| =
∑n

i=1 ti, since g is the product of |E| linear polynomials.

Claim:

gG =
∑

d1,...,dn≥0

(DEG(d1, . . . , dn)−DOG(d1, . . . , dn))

n∏
i=1

λdi
i .

We will prove the claim by induction on |E|.

If |E| = 0 then DEG(0, . . . , 0) = 1, DOG(0, . . . , 0) = 0 and DEG(d1, . . . , dn) = DOG(d1, . . . , dn) = 0 for all
d1, . . . , dn ∈ N not all zero. Therefore gG = 1 =

∑
d1,...,dn≥0(DEG(d1, . . . , dn)−DOG(d1, . . . , dn))

∏n
i=1 λ

di
i .

Assume |E| ≥ 1 and the claim is true for all graphs with |E| − 1 edges. Let {k, j} ∈ E with k < j and
consider G′ = (V,E \ {k, j}). This gives that gG = (λk − λj)gG′ . We know that

DEG(d1, . . . , dn) = DEG′(d1, . . . , dk−1, dk − 1, dk+1, . . . , dn) + DOG′(d1, . . . , dj−1, dj − 1, dj+1, . . . , dn)

because D is an even orientation of G containing (k, j) if and only if D \ {(k, j)} is an even orientation of
G′ and D is an even orientation of G containing (j, k) if and only if D \ {(j, k)} is an odd orientation of G′.
Similarly,

DOG(d1, . . . , dn) = DOG′(d1, . . . , dk−1, dk − 1, dk+1, . . . , dn) + DEG′(d1, . . . , dj−1, dj − 1, dj+1, . . . , dn).

By the inductive hypothesis

gG′ =
∑

d1,...,dn≥0

(DEG′(d1, . . . , dn)−DOG′(d1, . . . , dn))

n∏
i=1

λdi
i
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and therefore

gG = (λk − λj)
∑

d1,...,dn≥0

(DEG′(d1, . . . , dn)−DOG′(d1, . . . , dn))

n∏
i=1

λdi
i

=
∑

d1,...,dn≥0

(DEG′(d1, . . . , dn)−DOG′(d1, . . . , dn))(λk − λj)
n∏

i=1

λdi
i

=
∑

d1,...,dn≥0

(DEG′(d1, . . . , dk−1, dk − 1, dk+1, . . . , dn)−DOG′(d1, . . . , dk−1, dk − 1, dk+1, . . . , dn)−

DEG′(d1, . . . , dj−1, dj − 1, dj+1, . . . , dn) + DOG′(d1, . . . , dj−1, dj − 1, dj+1, . . . , dn))

n∏
i=1

λdi
i

=
∑

d1,...,dn≥0

(DEG(d1, . . . , dn)−DOG(d1, . . . , dn))

n∏
i=1

λdi
i ,

proving the claim.

Since DEG(t1, . . . , tn)−DOG(t1, . . . , tn) 6= 0, the coefficient of
∏n

i=1 λ
ti
i is nonzero. So by the Combinatorial

Nullstellensatz II, we have s1 ∈ S1, . . . , sn ∈ Sn such that g(s1, . . . , sn) 6= 0. Taking, c(i) = si for all
1 ≤ i ≤ n gives a desired proper coloring.

4.3 Zero-sum flows in graphs

For a graph, G = (V, {e1, . . . , en}), a zero p-flow of G is a map f : E → Zp \ {0} such that for all v ∈ V∑
e∈E:v∈e

f(e) = 0.

The following result was shown by Akbari et al. [1].

Theorem 4.3. Let G = (V, {e1, . . . , en}) be a graph and

g =
∏
v∈V

( ∑
ei∈E:v∈ei

λi

)p−1

− 1

 ∈ Zp[λ1, . . . , λn]

then G has a zero p-flow if and only if g /∈ 〈λp−11 − 1, . . . , λp−1n − 1〉.

Proof. Let G and g be as in the hypothesis of the theorem.

For every s ∈ Zp \ {0}, sp−1 = 1. So f : E → Zp is a zero Zp-flow of G if and only if g(f(e1), . . . , f(en)) 6= 0.

Take ḡ ∈ Zp[λ1, . . . , λn] to be a polynomial of least degree such that ḡ ∈ g + 〈λp−11 − 1, . . . , λp−1n − 1〉. Then
ḡ = g + h for some h ∈ 〈λp−11 − 1, . . . , λp−1n − 1〉. Since h =

∑n
i=0 hi(λ

p−1
i − 1) for some hi ∈ F [λ1, . . . , λn],

h(s1, . . . , sn) = 0 for all s1, . . . , sn ∈ Zp \ {0}. Therefore for all s1, . . . , sn ∈ Zp \ {0}, ḡ(s1, . . . , sn) =
g(s1, . . . , sn).

If ḡ 6= 0 then there exists a monomial
∏n

i=1 λ
ti
i with nonzero coefficient in g for some ti ∈ N such that∑n

i=1 ti = deg(ḡ). Since degi(ḡ) ≤ p − 2 for all 1 ≤ i ≤ n, ti ≤ p − 2. Since |Zp \ {0}| = p > p − 2, by the
Combinatorial Nullstellensatz II there exists s1, . . . , sn ∈ Zp\{0} such that g(s1, . . . , sn) = ḡ(s1, . . . , sn) 6= 0.
Setting f(ei) = si for all 1 ≤ i ≤ n, we can see that G has a zero p-flow.

If ḡ = 0 then ḡ = g is always zero and thus G has no zero p-flow.

Therefore G has a zero p-flow if and only if ḡ 6= 0 or equivalently g /∈ 〈λp−11 − 1, . . . , λp−1n − 1〉.
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