
We continue our discussion of the direct sum and direct products of families
of modules {Mi}i∈I .

The co-product of modules {Mi}i∈I will be the sub module of
∏
i∈IMi such

that all but �nitely many of the terms are zero: This will be denoted

⊕i∈IMi

For each i ∈ I there is a obvious map vi : Mi ↪→ ⊕i∈IMi that sends mi to
the element of ⊕i∈IMi with mi �in the ith� spot. Formally it is the element
(aj)j∈I where ai = mi and aj = 0 for all j 6= i.

To see that ⊕i∈IMi is a direct sum in the category of R modules let ti :
Mi → T be R module maps. De�ne, θ : ⊕i∈IMi → T by

θ((mi)i∈I) =
∑
i∈I

ti(mi)

Since (mi)i∈I has only �nitely many non-zero coordinates the above sum
is well de�ned. It is easily veri�ed that θ is a homomorphism of R modules.
The proof is omitted. Furthermore, for some �xed j ∈ I and mj ∈ Mj we
have θvj(mj) = tj(mj) as all the coordinates of vj(mj) are zero except mj . So
θvj = tj as desired. Furthermore, if ψ : ⊕i∈IMi → T such that ψvj = tj then
given an element (mi)i∈I let m̂i be the element with mi in the

ψ((mi)i∈I) =
∑
i∈I

ψ(vi(mi)) =
∑
i∈I

ti(mi) = θ((mi)i∈I)

Where we use that ψ is a module map and the fact that the above are �nite
sums.

Remark and Question, skip if you want: Do we get anything inter-
esting if instead of restricting to �nite subsets we restrict up to a speci�c car-
dinality. For example in our case we allow sums of less then ℵ elements. What
happens if we decide we want to allow sums less then c elements? I guess that
such things would make us think about the Continuum Hypothesis and related
issues. We could get around it by allowing at most countable sums. So we could
ask some questions, is the module that allows at most countable sums ever iso-
morphic to the co-product? It is not always so as we could take Mi = Z and
then ⊕∞n=1Z is countable, but if we allow countable sums the resulting module
is not. I can think of at least one situation where it may be useful to consider
countable sums. In functional analysis there is the notion of a Hamel Basis and
a Schroeder Basis. The Hamel basis, is the usual vector space basis. However,
when the dimension is in�nite it can be cumbersome to work with when the size
is large. One often considers a Schroeder Base which is a sequence of elements
{pn}such that every element of the space v can be written v =

∑∞
i=1 λipi for

scalars λi. Where the aforementioned sum converges with respect to some norm
on the space. We might want to try and model this situation algebraically. I
can imagine one might have some idea of �non convergence� in our space, which
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would be perhaps a sub module, we could then take all countable sums and mod
out by the �non-convergent� elements. Of course this is all just me talking out
loud and perhaps they are totally worthless.

We resume: We now come to a internal description of the direct product
Suppose that M =

∑
i∈IMi and if

∑
�nite ai = 0 with ai ∈ Mi then each

ai = 0 we call M the internal direct sum of the Mi.
For the case of two sub modules, the above we can see that M is a internal

direct sum of K,N if M = K +N and K ∩N = (0). It is clear that in this case
M ∼= K ⊕N .

Split Epics: De�nition: Given a short exact sequence

0→ K
f→M

π→ N → 0

we say that the sequence splits if there is some homomorphism g : N → M
such that πg = 1N . We also say that in general π : M → N splits if there is
some map g : N →M with πg = 1N .

Ex: Every short exact sequence of vector spaces splits.
Warning: Not every short exact sequence splits.
Proposition: Let N ≤ M . N is a direct summand if and only if there is a

split epic π : M → N .
Proof: Suppose that M = N ⊕K then πN , the projection unto N is a split

epic. Conversely, suppose that π : M → N is a split epic with g : N →M such
that πg = 1N . Put

π′ = 1M − gπ

Now take K = π′(M). Note that
π(1M − gπ) = π − (πg)π = π − 1Nπ = π − π = 0. So K ⊆ kerπ. Now take
N1 = g(N1). Note that g must be a monic as gn = 0 means πgn = n = 0
so that N1

∼= N . I claim that M = K + N1. So for each m ∈ M we have
π′(m) + gπ(m) = m− gπ(m) + gπ(m) = m. Since π′(m) + gπ(m) ∈ K +N1 we
have my claim. I now claim that N1 ∩K = 0 as suppose that for some b ∈ N
we have g(b) ∈ K so g(b) = m − gπ(m) for some m ∈ M . So, b = πg(b) =
π(m) − πgπ(m) = 0 which means g(b) = 0. So we have veri�ed that condition
that M is a internal direct sum of N1 and K. �

De�nition: A module is said to indecomposable if it cannot be written as a
direct sum of proper sub-modules.

It is then reasonable to attempt to �nd all modules over R and then given a
moduleM �nd out how to decomposeM into indecomposable sub modules. Ac-
cording to Rowen but classifying the indecomposable sub modules is apparently
di�cult.
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Bases and Generating Sets: De�nition:
A subset S of a module M is said to be a base for is a base if any element

of M can be uniquely written as a R linear combination of S elements.
A module with base is called Free.
Given a commutative ring R we de�ne R(n) = ⊕ni=1R.
We write ek := (0, ..., 1, ...) that has 1 at the kth coordinate and zero else-

where.
The idea is that rings with bases allow us to do some sort of linear algebra.
Lemma:
Let R have a base B. Then morphisms out of R are determined by their

action on the base.
Proof: Any element of R can be written as a �nite sum.

∑
ribi. Now let

(ab)b∈B be elements in a R module A. De�ne, φ(b) = ab and φ(
∑
ribi) =∑

riφ(bi). It is easily seen that this de�nes a homomorphism of R modules. On
the other hand, if φ and ψ are R modules maps that agree on a base into say
M then φ(

∑
ribi) =

∑
riφ(bi) =

∑
riψ(bi) = ψ(

∑
ribi) so φ = ψ.

�
Prop:
Let M be a �nitely generated module. Then F/K ∼= M where F is a free

module.
Proof: Suppose that M is generated by n elements, say m1, ...,mn. De�ne

a map φ : R(n) → M with φ(ek) = mk. Then it is immediate that φ is a
surjection, so by the Isomorphism theorem

M ∼= R(n)/ kerφ �

Prop:
Any module with a �nite base, is isomorphic to a free module.
Proof: Suppose b1, ..., bn is a base for a R module M . De�ne ψ : R(n) →M

as above. I.E. ψ(ek) = bk. We know that ψ is surjective so it remains to check
the kernel. Now suppose that

0 = ψ(

n∑
k=1

rkek) =

n∑
k=1

rkψ(ek) =

n∑
k=1

rkbk

Since the bk are a base we have rk = 0 for each k so kerφ = (0) and so
M ∼= R(n). �

We keep building up the theory, of free modules.
Lemma: Suppose that f : M → N is a onto module map, ker f = K. If N

has a base of size n and K has a base of size j then M has a base of size n+ j.
Proof: Take f(m1), ..., f(mn) as a base for N (we can always do this by

assumption) and k1, ..., kj as base for K. I claim that m1, ....mn, k1, ..., kj is a
base of M . Indeed, let m ∈M . Then we have
f(m) =

∑n
i=1 rif(mi)⇒ m−

∑n
i=1 rimi ∈ K. That is,

m =
∑n
i=1 rimi +

∑j
p=1 spkp so that m1, ....mn, k1, ..., kj span M . On the other
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hand, suppose that

n∑
i=1

rimi +

j∑
p=1

spkp = 0

then applying f we have

f(

n∑
i=1

rimi +

j∑
p=1

spkp) = f(

n∑
i=1

rimi) =
∑n
i=1 rif(mi) = 0

since
∑j
p=1 spkp ∈ ker f . Since the the f(mi) are a base the ri = 0 for each

i. But this means that
∑j
p=1 spkp = 0 so the sp = 0 for each p as the ki are a

base as well. So the m1, ....mn, k1, ..., kj are indeed a base as desired. �
We now go into a little more linear algebra.
Given a commutative ring R we de�ne Mm×n(R) to be m×n matrices with

coe�cients in R. All the usual linear algebra works, we multiply matrices and
so forth the usual way.

We get some standard things. The adjoint of of a n × n matrix A is the
matrix with Aij the matrix formed by taking the determinant of the i, j co
factor.

The standard proof goes through so that Aadj(A) = adj(A)A = (detA)In.
We also have the following.
Prop: The following are equivalent,
(i)A is right invertible
(ii)A is invertible
(iii) detA is invertible in R.
Proof: Use the adjoint lemma above. (It is explicitly done in the text on

page 59)
Continuing he linear algebra theme we have the following.
Fix Bases {e1, ..., en} of R(n) and {f1, ..., fm} on R(m) where n,m are arbi-

trary. There is a one to one correspondence

Φ : {maps ϕ : R(n) → R(m)} → {n×m matrices over R}

Φ(ϕ) = (ri,j) is de�ned by ϕ(ei) =
∑m
j=1 ri,jfj . Also, Φ(ψϕ) = Φ(ψ)Φ(ϕ).

Proof: See the text, page 60.
We �nally get to the the proof we have been working towards.
That, if R(n) ∼= R(m) then n = m. That is, the rank of a �nitely generated

free module is well de�ned. There are at least two ways I know how to prove
this. There is the proof in the text that uses matrices and the determinant.
Here is a non-matrix version. Well, the matrices at least are not in sight. We
still use linear algebra.

Fix a commutative ring R.
Sketch of the proof:ϕ : R(n) → R(m) be a surjection
Choose a maximal ideal m of R.(We can always do this with Zorns lemma)

Pass to the quotient R(n)/mR(n) ∼= (R/m)(n). Then ϕ induces a surjection Φ :
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R(n)/mR(n) → R(m)/mR(m). But this is a map of vector spaces so linear algebra
tells us that n ≥ m. (This is a exercise more or less in our text and in Dummit
and Foote. In Dummit and Foote they reference R(n)/mR(n) ∼= (R/m)(n). With
this idea the proof is relatively easy to come upon)

Lemma: It is easy to show that, If A1, ..., An are R modules over a commu-
tative ring and Bi a sub module of Ai for each i. Then,

n∏
i=1

Ai/

n∏
i=1

Bi ∼=
n∏
i=1

(Ai/Bi)

Proof: If ai ∈ Ai let āi = ai + Bi. Then f(a1, ..., an) = (ā1, ..., ān) is a
module homomorphism and clearly a surjection. Its kernel is precisely

∏n
i=1Bi

so we can apply the isomorphism theorem. �
Now let ϕ : R(n) → R(m) be a surjection. I claim that n ≥ m. Let m be

a maximal ideal of R. For any R module M we can de�ne IM to be all �nite
sums of elements

∑
ijmj with mj ∈M and ij ∈ I. Then, IM is a sub module

of M . I claim that,

R(n)/mR(n) ∼=
n∏
i=1

(R/m) (∗)

This follows from the lemma as mR = m is a sub-module of R and mR(n) =∏n
i=1 m. (Because we de�ned it this way)
Now, we de�ne Φ : R(n)/mR(n) → R(m)/mR(m) by

Φ(x+ mR(n)) = ϕ(x) + mR(m)

To see that this is well de�ned note that if x + mR(n) = y + mR(n) then there
is a element z ∈ mR(n) such that x+ z = y.

But z =
∑n
j=1 ijaj with ij ∈ m and aj ∈ R(n). So ϕ(

∑n
j=1 ijaj) =∑n

j=1 ijϕ(aj) ∈ mR(m). So ϕ(z) ∈ mR(m) and consequently

Φ(y + mR(n)) = ϕ(y) + mR(m) = ϕ(x+ z) + mR(m) = ϕ(x) + ϕ(z) + mR(m) =
ϕ(x) + mR(m) = Φ(x).

So Φ is well de�ned, it is a module map and is a surjection because ϕ is.
But by (*) Φ is a map of vector spaces since R/m is a �eld. So we can apply
the usual linear algebra to obtain n ≥ m as desired.

I'm going to close out this section a short note on Free modules.
We can also de�ne free modules via a universal property. Let A be a set. A

free module on a set A is a module FA and a set map ι : A→ FA such that ifM
is any module and f : A→M is any set mapping then there is a unique module
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homomorphism θ : FA →M that makes the following diagram commute.

A

f

��

ι // FA
θ

∃!}}
M

One has to do a general construction to show that such modules always
exists for a given set. But they in fact do, so one can to some degree forget
about the de�nition and just work with the universal property. For the details
see say Dummit and Foote.

The free modules of rank n that we have constructed are the free modules
on {1, ..., n} with ι(k) = ek for k = 1, ..., n into R(n).

Indeed, let f : {1, ..., n} →M be a set map and let ι(k) = ek be a map into
R(n).

Now set θ(ek) = f(k). So θ is indeed a module map, and θι = f. Further-
more, if ψι = f then ψ(ι(k)) = ψ(ek) = f(k) so that ψ and θ agree on a basis
and are so the same. So R(n) satis�es the universal property of free modules.
(This is basically just that maps are determined by their values on the base)
We also obtain via the above de�nition that FA is unique up to isomorphism by
the usual abstract nonsense argument. Namely let F1, F2 satisfy the universal
property with maps ι1, ι2. We have the following diagram via the universal
property applied to F1, F2.

F1

φ

��

A
ι1oo ι2 // F2

ψ

��
F2 F1

Note that

A

ιi

��

ιi // Fi
1Fi

∃!~~
Fi
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Satis�es the universal property so the identity is the unique map Fi to Fi that
satis�es the above diagram. Now, ψφ : F1 → F1 and

ψφι1 = ψ(φι1) = ψι2 = ι1

Since ψφ satis�es the second diagram by uniqueness ψφ = 1F1 . Similarly,
φψ = 1F2 so that F1

∼= F2 as desired.
Given all that, Free modules are somewhat nice.
For example, suppose that {Fα}α∈I are free R modules. Then

⊕αFα is Free

Proof: Let Bα be a base or Fα. The set
∑
αBα clearly span ⊕αFα as given

(xα)α ∈ ⊕αFα. Then, xα =
∑
�nite rα,kbα,k. Since there are �nitely many

non-zero xα we have

(xα)α =
∑
xα 6=0

∑
�nite

rα,kαbα,kα

Which is a �nite linear combination. On the other hand, suppose that there
is a �nite linear combination of {bα1,k}

nα1

k=1, ..., {bαp,k}
nαp
k=1 with scalars rαi,k such

that

p∑
i=1

nαi∑
k=1

rαi,kbαi,k = 0

Then, since we are working with a direct sum we have that each of the
components are zero, namely

∑nαi
k=1 rαi,kbαi,k = 0 which means the rαi,k = 0 as

the bαi are basis elements. This applies for each i so all the rαi,k = 0 and so∑
αBα is a basis.

So direct sums of free modules are free. However, it is NOT the case the
arbitrary products of free modules are free. In fact,

∏∞
i=1 Z can be shown to

not be a free Z module. This is in a exercise of Dummit and Foote, page 358.
I may add it at some point or someone else can if they want.
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