MATH 817 ASSIGNMENT 1

DUE OCTOBER 1, 2009, IN CLASS

If your assignment must be late for any reason please notify me (by email, phone or in person) **before** the assignment is due. There will be no retroactive lates.

- (1) (Isaacs problem 1.8). Let G be a group in which every nonidentity element is an involution (order 2). Show that G is abelian.
- (2) (Isaacs problem 2.4). Suppose G has precisely two subgroups. Without using the Sylow theorems show that G has prime order.
- (3) (Isaacs problem 2.21). Suppose $A \triangleleft G$ is abelian and AH = G for some subgroup H. Show that $A \cap H \triangleleft G$.
- (4) (Isaacs problem 3.4). Let π be any set of prime numbers. A finite group H is a π -group if all primes that divide |H| lie in π . If $|G| < \infty$, then a Hall π -subgroup if G is a π -subgroup H such that |G : H| is divisible by no prime in π . Let ϕ be a homomorphism defined on G.
 - (a) If $H \subseteq G$ is a Hall π -subgroup, show that $\phi(H)$ is a Hall π -subgroup of $\phi(G)$.
 - (b) Show that $\phi(G)$ is a π -group iff HN = G, where $N = \ker(\phi)$ and H is as in the previous part.
- (5) Let P be a p-group. Let A be a normal subgroup of order p. Prove that A is contained in the center of P.
- (6) Let G be a finite group, let $P, Q \in Syl_p(G)$.
 - (a) If $N_G(Q) = N_G(P)$ then P = Q.
 - (b) $N_G(N_G(P)) = N_G(P)$.
- (7) Show that a group of order 105 has a subgroup of order 35.