MATH 817 ASSIGNMENT 1 SOLUTION

- (1) Take any $a, b \in G$. $a^2 = b^2 = (ab)^2 = 1$ so $[a, b] = a^{-1}b^{-1}ab = (ab)(ab) = 1$.
- (2) If G = 1 then G has exactly 1 subgroup. If there is any non-identity element of G which does not generate G then the subgroup generated by this element is a proper, nontrivial subgroup which is impossible. Thus $G = \langle x \rangle$ is cyclic. If G is infinite then $\langle x^2 \rangle$ is a proper nontrivial subgroup again a contradiction. Let 1 < n = |G|. If k|n, 1 < k < n then $x^{n/k}$ has order 1 < k < n which is impossible. Thus n is prime.
- (3) Take $a \in A$ then $(A \cap H)^a = A$ since A is abelian. Take $h \in H$ then $(A \cap H)^h \subseteq H$ (always) and $(A \cap H)^h \subseteq A$ since $A \triangleleft G$. So $(A \cap H)^h \subseteq A \cap H$. Since AH = G, $A \cap H \triangleleft G$.
- (4) (a) Let $N = \ker(\phi)$. Then $N \triangleleft G$ so NH is a subgroup of G. So by the correspondence theorem $|G: NH| = |\phi(G): \phi(H)|$. Also |G: NH| divides |G: H| since $H \subseteq NH$. Thus $|\phi(G): \phi(H)|$ contains no primes from π . Also by the isomorphism theorems $\phi(H) \cong H/(H \cap N)$ so the order of $\phi(H)$ divides the order of H.

Thus $\phi(H)$ is a Hall π -subgroup.

(b) Suppose G = HN. Then $\phi(G) \cong G/N = HN/N \cong H/(H \cap N)$ which is a π -group.

Suppose $\phi(G)$ is a π -group. Then $\phi(G) \cong G/H$ so |H| contains the full powers that appear in |G| of every prime not in π . Also $|HN| = |H||N|/|H \cap N|$ so HN contains the full powers that appear in |G| of every prime not in π . Thus |G:HN| is only divisible by primes in π . But |G:HN| divides |G:H| and so contains only primes not in π . Thus |G:HN| = 1.

(5) A is cyclic since it is of order p. Let a be a generator. Take any $x \in P$. Then $x^{-1}ax = a^k$ for some $1 \le k \le p-1$ since $A \triangleleft P$. Thus, as in an example from class, $a = xa^kx^{-1} = a^{k^2}$. So $p|k^2 - 1 = (k+1)(k-1)$. Due to the restrictions on k this means k = 1 or k = -1.

Thus P has been partitioned into two sets – those elements, P_+ , which lead to k = 1 and those, P_- , which lead to k = -1. The k of a product of two elements is the product of the ks. If $P_- = \emptyset$ then we're done. Suppose otherwise that $z \in P_-$. Then we have a set bijection

$$\begin{array}{c} P_+ \to P_- \\ y \mapsto yz \end{array}$$

So $|P| = 2|P_+|$ so the order of P is a power of 2. Thus the order of A is 2 so $a = a^{-1}$ and so in all cases the elements of P commute with a.

- (6) (a) From class we know that if $P \subseteq N_G(Q)$ then $P \subseteq Q$. Now, $P \subseteq N_G(P) = N_G(Q)$ so $P \subseteq Q$. By symmetry (or order) then P = Q.
 - (b) $P \in Syl_p(N_G(N_G(P)))$ Any conjugate Q of P by an element of $N_G(N_G(P))$ is in $N_G(P)$ since $P \subseteq N_G(P)$ and $N_G(P) \triangleleft N_G(N_G(P))$. Thus, as in the previous part, Q = P. So P is the unique Sylow-p-subgroup of $N_G(N_G(P))$. Thus

 $P \triangleleft N_G(N_G(P))$. But $N_G(P)$ in the maximal subgroup in which P is normal. So $N_G(P) = N_G(N_G(P))$.

(7) Let |G| = 105. $105 = 7 \cdot 5 \cdot 3$, $35 = 7 \cdot 5$.

 $n_7|5 \cdot 3 \text{ and } n_7 \equiv 1 \mod 7 \text{ so } n_7 = 1 \text{ or } n_7 = 15$. $n_5|7 \cdot 3 \text{ and } n_5 \equiv 1 \mod 5 \text{ so } n_5 = 1 \text{ or } n_5 = 21$.

Suppose $n_7 = 15$ and $n_5 = 21$. Then, since cyclic groups of prime order have no nontrivial proper subgroups, G would have $15 \cdot 6$ elements of order 7 and $21 \cdot 5$ elements of order 5 giving 174 elements. A contradiction.

So let $P \in \text{Syl}_7(G)$ and $Q \in \text{Syl}_5(G)$. Then either $P \triangleleft G$ or $Q \triangleleft G$ (or both), so PQ is a subgroup of G and $|PQ| = |P||Q|/|P \cap Q| = 35$.