MATH 817 ASSIGNMENT 1 SOLUTION

(1) Take any $a, b \in G . a^{2}=b^{2}=(a b)^{2}=1$ so $[a, b]=a^{-1} b^{-1} a b=(a b)(a b)=1$.
(2) If $G=1$ then G has exactly 1 subgroup. If there is any non-identity element of G which does not generate G then the subgroup generated by this element is a proper, nontrivial subgroup which is impossible. Thus $G=\langle x\rangle$ is cyclic. If G is infinite then $\left\langle x^{2}\right\rangle$ is a proper nontrivial subgroup again a contradiction. Let $1<n=|G|$. If $k \mid n$, $1<k<n$ then $x^{n / k}$ has order $1<k<n$ which is impossible. Thus n is prime.
(3) Take $a \in A$ then $(A \cap H)^{a}=A$ since A is abelian. Take $h \in H$ then $(A \cap H)^{h} \subseteq H$ (always) and $(A \cap H)^{h} \subseteq A$ since $A \triangleleft G$. So $(A \cap H)^{h} \subseteq A \cap H$. Since $A H=G$, $A \cap H \triangleleft G$.
(4) (a) Let $N=\operatorname{ker}(\phi)$. Then $N \triangleleft G$ so $N H$ is a subgroup of G. So by the correspondence theorem $|G: N H|=|\phi(G): \phi(H)|$. Also $|G: N H|$ divides $|G: H|$ since $H \subseteq N H$. Thus $|\phi(G): \phi(H)|$ contains no primes from π.
Also by the isomorphism theorems $\phi(H) \cong H /(H \cap N)$ so the order of $\phi(H)$ divides the order of H.
Thus $\phi(H)$ is a Hall π-subgroup.
(b) Suppose $G=H N$. Then $\phi(G) \cong G / N=H N / N \cong H /(H \cap N)$ which is a π-group.
Suppose $\phi(G)$ is a π-group. Then $\phi(G) \cong G / H$ so $|H|$ contains the full powers that appear in $|G|$ of every prime not in π. Also $|H N|=|H||N| /|H \cap N|$ so $H N$ contains the full powers that appear in $|G|$ of every prime not in π. Thus $|G: H N|$ is only divisible by primes in π. But $|G: H N|$ divides $|G: H|$ and so contains only primes not in π. Thus $|G: H N|=1$.
(5) A is cyclic since it is of order p. Let a be a generator. Take any $x \in P$. Then $x^{-1} a x=a^{k}$ for some $1 \leq k \leq p-1$ since $A \triangleleft P$. Thus, as in an example from class, $a=x a^{k} x^{-1}=a^{k^{2}}$. So $p \mid k^{2}-1=(k+1)(k-1)$. Due to the restrictions on k this means $k=1$ or $k=-1$.

Thus P has been partitioned into two sets - those elements, P_{+}, which lead to $k=1$ and those, P_{-}, which lead to $k=-1$. The k of a product of two elements is the product of the $k \mathrm{~s}$. If $P_{-}=\varnothing$ then we're done. Suppose otherwise that $z \in P_{-}$. Then we have a set bijection

$$
\begin{aligned}
P_{+} & \rightarrow P_{-} \\
y & \mapsto y z
\end{aligned}
$$

So $|P|=2\left|P_{+}\right|$so the order of P is a power of 2 . Thus the order of A is 2 so $a=a^{-1}$ and so in all cases the elements of P commute with a.
(6) (a) From class we know that if $P \subseteq N_{G}(Q)$ then $P \subseteq Q$. Now, $P \subseteq N_{G}(P)=N_{G}(Q)$ so $P \subseteq Q$. By symmetry (or order) then $P=Q$.
(b) $P \in S y l_{p}\left(N_{G}\left(N_{G}(P)\right)\right.$) Any conjugate Q of P by an element of $N_{G}\left(N_{G}(P)\right)$ is in $N_{G}(P)$ since $P \subseteq N_{G}(P)$ and $N_{G}(P) \triangleleft N_{G}\left(N_{G}(P)\right)$. Thus, as in the previous part, $Q=P$. So P is the unique Sylow-p-subgroup of $N_{G}\left(N_{G}(P)\right)$. Thus
$P \triangleleft N_{G}\left(N_{G}(P)\right)$. But $N_{G}(P)$ in the maximal subgroup in which P is normal. So $N_{G}(P)=N_{G}\left(N_{G}(P)\right)$.
(7) Let $|G|=105.105=7 \cdot 5 \cdot 3,35=7 \cdot 5$.
$n_{7} \mid 5 \cdot 3$ and $n_{7} \equiv 1 \bmod 7$ so $n_{7}=1$ or $n_{7}=15 . n_{5} \mid 7 \cdot 3$ and $n_{5} \equiv 1 \bmod 5$ so $n_{5}=1$ or $n_{5}=21$.

Suppose $n_{7}=15$ and $n_{5}=21$. Then, since cyclic groups of prime order have no nontrivial proper subgroups, G would have $15 \cdot 6$ elements of order 7 and $21 \cdot 5$ elements of order 5 giving 174 elements. A contradiction.

So let $P \in \operatorname{Syl}_{7}(G)$ and $Q \in \operatorname{Syl}_{5}(G)$. Then either $P \triangleleft G$ or $Q \triangleleft G$ (or both), so $P Q$ is a subgroup of G and $|P Q|=|P||Q| /|P \cap Q|=35$.

