MATH 817 ASSIGNMENT 2 SOLUTIONS

- (1) (a) $G'' \triangleleft G$ so let G act on G'' by conjugation. The kernel of the action is $C_G(G'')$, and so $G/C_G(G'')$ is isomorphic to a subgroup of $\operatorname{Aut}(G'')$. But G'' is cyclic by assumption, so the only automorphisms consist of raising the elements of G'' to powers relatively prime to |G''| in the finite case and raising to powers ± 1 in the infinite case. In particular all such automorphisms commute, so $\operatorname{Aut}(G'')$ is abelian. Thus $G/C_G(G'')$ is abelian. Thus (Isaacs Theorem 2.10) $G' \subseteq C_G(G'')$. So each element of G'' commutes with each element of G''. Thus $G'' \subseteq Z(G')$.
 - (b) Write $C'/G'' = \langle xG'' \rangle$. Write $G'' = \langle y \rangle$. Then G' is generated by x and y and $y \in G'' \subseteq Z(G')$ so xy = yx. Thus G' is abelian and so G'' = 1.
- (2) Note that [M, N] = 1 since $M \triangleleft G$ and $N \triangleleft G$, so any commutator is in both M and N but $M \cap N = 1$.

Suppose $\phi : M \cong N$. Let $D = \{m\phi(m) : m \in M\}$.

D is a subgroup of G since $1 = 1\phi(1) \in D$ and if $m, n \in M$, then $m\phi(m)n\phi(n) = mn\phi(mn)$ since [M, N] = 1, which also gives that $(m\phi(m))^{-1} = \phi(m^{-1})m^{-1} = m^{-1}\phi(m^{-1}) \in D$.

Suppose $x \in D \cap M$ then $x = m\phi(m)$ for some $m \in M$. So $xm^{-1} \in M$ and $xm^{-1} = \phi(m) \in N$ but $M \cap N = 1$ which implies $\phi(m) = 1$ and so m = 1 and so x = 1. Thus $D \cap M = 1$. Similarly $D \cap N = 1$.

We always have $MD \subseteq G$. Take any $g \in G$. G = MN so write $g = mn, m \in M$, $n \in N$. Then $g = (m\phi^{-1}(n^{-1}))(\phi^{-1}(n)n) \in MD$. So G = MD. Similarly G = DN. Thus D is a diagonal subgroup of G.

Now suppose D is a diagonal subgroup of G.

Take $m \in M$. Since $N \cap D = 1$ and $M \subseteq G = DN$ we can uniquely write m = dn with $d \in D$, $n \in N$. Thus we can define $\phi : M \to N$ by $\phi(m) = n^{-1}$.

Take $m, m' \in M$. Write m = dn, m' = d'n', with $d, d' \in D$, $n, n' \in N$. Then $\phi(m)\phi(m') = n^{-1}(n')^{-1}$. Also

mm' = dnm'= dm'n since [M, N] = 1= dd'n'n

so $\phi(mm') = (n'n)^{-1} = n^{-1}n'^{-1}$. Thus ϕ is a homomorphism.

Since $M \cap D = 1$ and $N \subseteq G = DM$ we can uniquely write any $n \in N$ as n = dm for some $m \in M$, $d \in D$ in which case $\phi(m) = n^{-1}$. Thus ϕ is onto. Further if $\phi(m') = n^{-1}$ for some $m' \in M$ then m' = d'n for some $d' \in D$, and so $n = d'^{-1}m'$ so by uniqueness m' = m. Thus ϕ is one-to-one. Hence ϕ gives an isomorphism between M and N.

(3) Let P be a finite nonabelian p-group. By the class formula Z(P) has size divisible by p since all other terms of the formula do. Thus $Z(P) \neq 1$. Suppose $H \subseteq P$ is a subgroup with the property that HZ(P) = P and $H \cap Z(P) = 1$. Then $P = Z(P) \rtimes H$ where the implicit action is the conjugation action of H on Z(P). But Z(P) is the center of P so this action is trivial. Thus $P = Z(P) \times H$. So $H \triangleleft P$. Then (Isaacs Theorem 5.21) $H \cap Z(P) \neq 1$ which is a contradiction. Thus P cannot split over its center.

(4) (a) Let G and G' exist with these properties. Let $\overline{H}, \overline{H}', \overline{N}, \overline{N}'$ be the copies of H and N in G and G' as given in the theorem. Let $\phi : \overline{H} \to \overline{H}'$ and $\psi : \overline{N} \to \overline{N}'$ be the isomorphisms induced by the isomorphisms with H and N in each case. Consider the map $\theta : G = \overline{HN} \to G' = \overline{H}'\overline{N}'$ given by $\theta(\bar{h}\bar{n}) = \phi(\bar{h})\psi(\bar{n})$. This map is well defined by conditions (a) and (b) for G. Write $\bar{h}' = \phi(\bar{h})$ and $\bar{n}' = \phi(\bar{n})$ and likewise.

Check θ is a homomorphism

$$\theta(\bar{h}\bar{n}\bar{h_1}\bar{n_1}) = \theta(\bar{h}\bar{h_1}\bar{n}^{h_1}\bar{n_1})$$

$$= \theta(\bar{h}\bar{h_1}(\bar{n}^{h_1})\bar{n_1})$$

$$= \bar{h}'\bar{h_1}'(\bar{n}^{h_1})'\bar{n_1}'$$

$$= \bar{h}'\bar{h_1}'(\bar{n}')^{\bar{h_1}'}\bar{n_1}'$$

$$= \bar{h}'\bar{n}'\bar{h_1}'\bar{n_1}'$$

$$= \theta(\bar{h}\bar{n})\theta(\bar{h_1}\bar{n_1})$$

 θ is onto by (a) for G' and one-to-one by (b) for G'.

(b) Suppose we have N and H and $\phi : H \to \operatorname{Aut}(N)$. Then H acts via automorphisms on N and so we can form G as in Isaacs Theorem 7.17, which is unique by the previous part. We can also form $N \rtimes H$ as discussed in class as the set $N \times H$ with the multiplication

$$(x_1, h_1)(x_2, h_2) = (x_1\phi(h_1)(x_2), h_1h_2)$$

To show $N \rtimes H \cong G$ it suffices by the preivous part to show that $N \rtimes H$ satisfies (a)-(d) of Isaacs' Theorem 7.17. Let $\overline{N} = \{(x, 1) | x \in N\}$, let $\overline{H} = \{(1, h^{-1}) | h \in H\}$ (with an inverse because of Isaacs' backwards conventions, but isomorphic none-the-less).

Then $\overline{HN} = N \rtimes H$ and $\overline{N} \cap \overline{H} = 1$. To check $\overline{N} \triangleleft N \rtimes H$ take $(x, 1) \in \overline{N}$ and $(n, h) \in N \rtimes H$. Then $(n, h)^{-1} = (\phi(h^{-1})(n^{-1}), h^{-1})$ so

$$(x,1)^{(n,h)} = (\phi(h^{-1})(n^{-1}), h^{-1})(x,1)(n,h)$$

= $(\phi(h^{-1})(n^{-1}x), h^{-1})(n,h)$
= $(\phi(h^{-1})(n^{-1}xn), 1)$
 $\in \overline{N}$

To check (d) take $n \in N$ and $h \in H$. Then $\overline{n^h} = \overline{\phi(h)(n)} = (\phi(h)(n), 1)$ and $\overline{n^h} = (n, 1)^{(1,h^{-1})} = (1,h)(n,1)(1,h^{-1}) = (\phi(h)(n), 1)$.

(5) *P* is cyclic of order *p* so *P* is generated by a product of disjoint *p*-cycles, write $P = \langle a \rangle$. The orbits of *P* are these *p*-cycles along with an orbit of size 1 for each element that *P* fixes. We also have that $x^{-1}ax = a^n$ for some 1 < n < p. Suppose *i* and *j* are both fixed by *x* and are in the same orbit of *a*. So *i* and *j* are in a *p*-cycle of *a*. So we can find $1 \le k < p$ such that a^k maps *i* to *j*. Then $x^{-1}a^kx = a^{nk}$ also maps *i* to *j*. But, since *p* is prime, a nontrivial power of a *p*-cycle is also *p*-cycle and differs on each point of the underlying set. This implies $nk \equiv k \mod p$. Thus $(n-1)k \equiv 0 \mod p$ which is impossible since $1 \le k < p$ and 1 < n < p. Thus *x* can fix at most one point of each orbit of *P*.

(6) Certainly powers of a common element commute. For the other direction suppose F is a free group. Then elements of F are reduced words on some underlying set. Suppose a, b ∈ F commute, are not powers of a common element, and a and b are of minimim total length so that this occurs.

Then $[a, b] = a^{-1}b^{-1}ab = 1$ so the word $a^{-1}b^{-1}ab$ must not be reduced. So either a ends with some letter x and b begins with x^{-1} or similarly for a^{-1} and b^{-1} , or similarly for b^{-1} and a. Pick one such letter x and write

$$a = x^k w x^\ell \qquad b = x^m w' x^r$$

where w and w' neither begin nor end with any power of x. Then

$$1 = [a, b] = x^{-\ell} w^{-1} x^{-k-n} (w')^{-1} x^{k-m} w x^{\ell+m} w' x^{n}$$

For the first w^{-1} to reduce further, at any stage of the reduction, we must have that $x^{-k-n} = 1$ so k = -n. For the last w' to reduce further, at any stage of the reduction we must have that $x^{\ell+m} = 1$ so $\ell = -m$. Thus

$$1 = [a, b] = x^{-\ell} w^{-1} (w')^{-1} x^{k-m} w w' x^{n}$$

There are now two cases. Either k = m or ww' = 1. Suppose k - m, so $k = m = -n = -\ell$ and thus

$$1 = [a, b] = x^{-n}[w, w']x^n$$

Hence [w, w'] = 1 and so by minimality of the pair (a, b) we must have that $w = y^s$, $w' = y^t$ for some $y \in F$. This gives

$$a = x^{-n}y^{s}x^{n} = (y^{x^{n}})^{s}$$
 $b = x^{-n}y^{t}x^{n} = (y^{x^{n}})^{t}$

so a and b are powers of a common element contradiction.

Now suppose ww' = 1. So

$$a = x^k w x^\ell$$
 $b = x^{-\ell} w^{-1} x^{-k} = a^{-1}$

which is again a contradiciton. Thus commuting elements must be powers of a common element.