MATH 817 ASSIGNMENT 3

DUE OCTOBER 22, 2009, IN CLASS

If your assignment must be late for any reason please notify me (by email, phone or in person) **before** the assignment is due. There will be no retroactive lates.

- (1) Let $\phi: G \to H$ be a surjective homomorphism. Show $\phi(G^n) = H^n$.
- (2) (Isaacs problem 8.10). A group G is supersolvable if there exist normal subgroups N_i with

$$1 = N_0 \subseteq N_1 \subseteq \dots \subseteq N_n = G$$

and such that N_{i+1}/N_i is cyclic for $0 \le i < n$. Show that a finite nilpotent group is necessarily supersolvable.

- (3) (Isaacs problem 8.16). Show that a minimal normal subgroup of a supsersolvable group is cyclic.
- (4) (Isaacs problem 2.12c, Lemma 8.26) For $x, y, z \in G$ let [x, y, z] = [[x, y], z]. Prove $[x, y^{-1}, z]^y [y, z^{-1}, x]^z [z, x^{-1}, y]^x = 1$
- (5) (a) Show that every group of order 4 is solvable.
 - (b) Show that every group of order pq, p and q distinct primes, is solvable.
 - (c) Show that every group of order 12 is solvable.
 - (d) Show that every group of order 36 is solvable.

Hint, consider Sylow subgroups and note that if $H \triangleleft G$, |G:H| = n then there is a homomorphism $G \rightarrow S_n$.